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SIGNAL-TO-NOISE RATIO REQUIREMENTS FOR HALF-WAVE AND 
FULL-WAVE NONLINEAR DETECTORS WITH ARBITRARY POWER LAWS, 
SAMPLING RATES, INPUT SPECTRA, AND FILTER CHARACTERISTICS 

INTRODUCTION 

The purpose of this report is to determine the signal-to-noise ratio 

requirements for various half-wave and full-wave rectifiers, arbitrary input 

spectra, and post-detector filter characteristics. Both continuous and 

sampled systems are considered, as well as broadband and narrowband spectra. 

The system of interest is indicated in figure 1. The input x(t) is a 

2 
real stationary zero-mean Gaussian process with variance o and normalized 

correlation p(T). The following analysis will utilize these general 

parameters where possible; however, since the system of figure 1 is to be used 

for detection or a decision between two hypotheses, we will later specialize 

to the cases 

2 
o  = 

p(r) = 

2     A U a, under H, 

o_ under H_ 

p.|(r) under H^ 

PgCr) under H^ 
(1) 

where the subscript denotes the hypothesis number, 1 or 0. That is, H, 

denotes the signal plus noise hypothesis, while H„ denotes the noise-only 

hypothesis. 
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The nonlinearity g{x] is characterized by output 

y(t) = g{x(t)) ; (2) 

this is a memoryless transformation of the input at the same time instant. We 

shall be particularly interested in the class of half-wave rectifiers 

jx" for X > 0^ 

HA  =) (3) 
[0 for X < Oj 

and the class of symmetric full-wave rectifiers 

g{x] = Ixl"  for all x . (4) 

The particular rectifier with v = 0 is not useful for detection purposes here, 

in either the full-wave or half-wave case. For the full-wave rectifier, u = 0 

corresponds to a constant output, y(t) = 1, regardless of what the input x(t) 

is. For the half-wave rectifier, v = 0 corresponds to y(t) = 1 whenever 

x(t) > 0; but if we are trying to decide between two zero-mean processes of 

different levels, this information is lost at the half-wave rectifier output. 

Hence, we assume u > 0 from this point on, when we deal with u-th law 

rectifiers. 

The low-pass filter is characterized either by its impulse response h(T) 

or by its voltage transfer function* 

*Integrals and sums without limits are over the entire range (-<», -HO) of 

nonzero integrands and summands, respectively. 
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I H(f) =   cfT exp(-i2irfr) h(r) (5) 

Particular examples are the nonimpulsive filters, 

h(r) = 

]: for 0 <-r< T 

0 otherwise 
, box car filter. (6) 

and 

RC ^^P 
h(T) = RC filter (7) 

Another class of great interest is the impulsive filters with a response 

composed of a number of equispaced impulses: 

^ w(n; h(r) = > w(n) 5(r-nA) 

n 

(8) 

Sample increment a is arbitrary; the sum is over all nonzero weights {w(n)j . 

Since the filter output in figure 1 in steady state is given, in this latter 

case, by 

z(t) =   dr h(r) y(t--n = dr ^ w(n) 6(r-nA) g{x(t-T)} = 

= 2_   "(") g{x(t-nA)] , (9) 

an equivalent alternative form is that given in figure 2. Namely, the input 

x(t) is sampled at increments A apart in time and subjected to nonlinearity 

g[x). These quantities are then weighted and accumulated, to give output z(t) 

at a time t equal to a multiple of A. As a special case, if 
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1 for 1 < n < M 
w(n) = ' , box car filter, (10) 

.0 otherwise, 

then all M samples of the input are equiweighted. 

The input spectrum that will be most closely considered is taken to be 

flat in a band W about center frequency +f ; see figure 3. The Q of this 

spectrum is 

Q = f,/w > ^ , (11) 

and the highest frequency contained is 

f^ = f^.y = wQ.i (12) 

The constraint on Q in (11) guarantees that W is always the bandwidth of the 

positive frequency components of the input spectrum. 

The normalized correlation corresponding to figure 3 is 

p(T)  = cos(2irf T) sinc(WT) , (13) 

where we define 

sinc(x)  = sin(-ffx) 
irX 

(14) 

For the special case of a low-pass spectrum, f = W/2, (13) reduces to 

p{T)  = sinc(2Wi:)  for Q = ^ ; 

the input spectrum is flat over (-W,W) in this particular case. 

(15) 
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2 
Let m and a   denote the mean and variance, respectively, of the 

output of the detection systems in figures 1 and 2. Our main interest here is 

in the evaluation of the output signal-to-noise ratio y  defined in accordance 

with the power deflection criterion: 

(m , - m _\ z1   zOJ ,,,> 
Y =    2      • ^^^' 

''zO 

The subscripts 1 and 0 denote the corresponding hypotheses, as already 

introduced in (1). We will determine the dependence of y on all the 

parameters encountered above, such as a,, OQ, PQCO. «. T, a, M, W, Q, 

and compare the performance of different nonlinear systems for various 

sampling rates and spectra. These results will greatly extend those given in 

[1], for example, and will be much more accurate, since we will use 1000 terms 

in our series expansions, instead of the 3 or 4 terms used there. Observe 

that the absolute levels (gains) of the nonlinearity and filter cancel out in 

quantity y;  thus, we can assume any convenient level for them, as done in (3), 

(4), (6), (10), for example. Limitations of the output deflection criterion 

(16) will be discussed later. 
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DERIVATION OF OUTPUT MOMENTS 

Output Mean 

In order to determine the detection system output signal-to-noise ratio 

defined in (16), we need m and a .    For any filter h(r), whether 

impulsive or not, since the output in steady state is 

= [ z(t) =   dT h(r) y(t-TO , (17) 

then the mean of the output is 

m^ = z(t) = dr h(T) y(t-T) = Tiy 1 dT h(T) . (18) 

in terms of the mean of nonlinearity output y(t). (An overbar denotes an 

ensemble average.) However, this latter quantity is given by 

m 
y 

= y(t) = g[x(t)] = fdx g[x] p^^^x) , (19) 

in terms of the first-order probability density function p^ '   of input x(t) 

2 
Since the input is zero mean Gaussian, with variance a  ,  then 

P^^^x) -1,(1]  , (20) 

where we define 

0(w) = (2ir) ^^^ exp(-w^/2) .        . (21) 

7 
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Substitution of (20) in (19) yields for the mean of y(t), 

m =  dx g[xl - a/^j =  dw g{ow] 0(w) . 

Coupled with (18), system output mean m is now available as 

(22) 

m. = I dw g[ow] 0(w)    dr h(r) 

Output Variance 

The ac (zero-mean) output of the detection system is 

z(t) = z(t) - 7(t) = TdT h(T) y(t-T) . 
J 

where the ac filter input is - 

y(t) = y(t) -V(tr = y(t) - my . 

Then the variance of the detection system output is 

(23) 

(24) 

a^ = z^(t) = jj du dv h(u) h(v) y(t-u) y(t-v) = 

du dv h(u) h(v) R-(u-v) = rdTa(r) R~(r) . (25) 

where 

RjCT) = y(t) y(t-T) 

is the (auto) correlation of random process y(t), and 

a(r) = Jdu h(u) h(u-x) 

is the autocorrelation of the deterministic filter impulse response. 

(26) 



TR 7633 

An alternative form to (25) is available via the frequency domain 

expression 

= j df |H(f)| P^(f) . (27) 

where [H(f)  is the filter power transfer function, and P^(f) is the 

power density spectrum of y(t). 

Now from (24), we see that correlation 

R-.(T) = R (T) - m . 
y    y    y 

(28) 

Also, from (2), we have correlation 

Ry(r) = y(t) y(t-r) =  g{x(t)} glx(t-x)] = 

= IJ dx^ dxjj g[x^]  g[xj  P^^^x^.  x^^. T)   . (29) 

in terms of the second-order probability density function of input process 

x(t). 

At this point, we use Mehler's expansion for a Gaussian process [2, (67)]: 

OO 

P^'^x,, x,.r) = p(^^x^) p(^)(x^) ^ ly P'(r) Hep) He''^^ a" b' 

,(1) 

r- 9, (30) 

k=0 

where p   has already been encountered in (20)-(21), and He|^^(x) is the 

Hermite polynomial [3, (22.2.15)]. Substitution of (30) in (29) yields 
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oo 

,(r) = ^ ^ p^r) G^k) . 

k=0 

where nonlinearity coefficients are defined as 

(31) 

G(k) = dx g[x] p^^^x) He. (x/o) = 

dw g[ow} 0(w) He. (w)  for k > 0 (32) 

Here we used (20) and (21) 

In particular, we have from (32) and (19), the zero-th order coefficient 

G(0) = J dx g[x} p^^\x) = m. (33) 

Thus the k = 0 term in sum (31) is simply m . 

with (28) and (31), we obtain correlation 

Combining this information 

oo 

^^(T) = ^  ^ p^-n G^k) (34) 

k=l 

It is worthwhile observing that coefficients [G(k)} in (32) depend solely 

on the input standard deviation a  and the nonlinearity g [x]; they are 

independent of the input spectral shape or the filter characteristics. Of 

course, from (1). since 

a, under hypothesis H, 

o„ under hypothesis H^. 
(35) 

10 



TR 7633 

then 

rG^(k) under H^") 
G(k) =1 \ . (36) 

/GQ(k) under HQJ 

However, we will keep a  general for now, at least until we have to specialize 

to H-, versus HQ, or to evaluate output signal-to-noise ratio y in (16). A 

similar procedure has been adopted with respect to general p{Z)  in (30), (31), 

and (34), above. 

We now utilize (34) in (25) to obtain the detection system output variance 

OA 

""z  = dra(r) ^ ly p^T) G^k) = 

k=l 

oo 

= ^ ^r G^k) A(k) , (37) 

k=l 

where we define coefficient 

A(k) = J dra(T) p^(T)       for k > 1 . (38) 

This sequence [A(k)j depends solely on filter h(T) and input normalized 

correlation p(r); it is independent of o and g[x]. Thus sequences ^G(k)] and 

[A(k)j in (32) and (38), respectively, completely separate the dependence of 

the system output variance on the relevant parameters of the problem. 

However, just as in (1) and (36), since 

n 
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P^ (r) under H 

P(r) =^ ^  . (39) 
PQ{T)  under'H, 

then 

[A,(k) under H, 

A(l<) =\ }. (40) 
/AQ(k) under HQ 

The results above for output mean m in (18) and output variance 
2 

a    in (37) are exact. There are no assumptions regarding small input 

signal-to-noise ratio, large averaging time, or large time-bandwidth product. 

They hold for arbitrary input strength a,  input normalized correlation p{T), 

filter impulse response h(T), and nonlinearity g[x]. Also a  and p(r) can vary 

with the hypothesis, as in (1). The input spectrum can be low-pass, 

broadband, or narrowband. The filter can be impulsive as in (8), or otherwise 

as in (6) and (7); the sampling interval A and weights [w(nj} in (8), and the 

duration T or time constant RC in (6) or (7), are arbitrary. The nonlinearity 

g^x] can be a u-th law power device as described in (3) or (4), but need not 

be; also, v is not limited to being an integer. The effects of deliberately 

undersampling the input process in figure 2 can be investigated by choosing 

sampling increment A larger than the inverse of twice the highest frequency, 

(12), in figure 3; conversely, the effects of a continuous filter impulse 

response can be deduced by choosing A very small. All of these effects will 

be investigated here. 

The major assumption utilized is that the input signal and noise must be 

Gaussian; this precludes the presence of pure tones in the input signal. 

12 
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Output Siqnal-to-Noise Ratio 

The system output signal-to-noise ratio was defined in (16). We now 

employ (18), (33), and (37) to obtain it in the form 

T=   dTh(r)   ^oo  1 T-^  . (41) 

The utility of this result depends on the ability to accurately and 

efficiently evaluate the single integrals for G(l<) and A(k) in (32) and (38), 

respectively, for high-order k. 

A note of caution is worthwhile here: since output signal-to-noise 

ratio, Y, in (16) and (41) only uses second-order moment information, it will 

have limited capability insofar as determining the system operating 

characteristics, that is, detection probability versus false alarm 

probability, unless output z(t) is fairly well approximated by a Gaussian 

random variable. This latter situation will obtain when the product of 

averaging time and input bandwidth is large relative to 1; furthermore, that 

means that low input signal-to-noise ratios can be tolerated and yet decent 

performance predictions can be realized. Hence, although we concentrate here 

on the statistic y,  we are aware of its limitations as a performance measure. 

To accurately determine the exact operating characteristics, the techniques of 

[4] could be advantageously employed. 

13/14 
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BASIS OF COMPARISON 

In order to compare the various nonlinear systems subject to different 

input spectra and averaging filters, a standard performance level for output 

signal-to-noise ratio y  will be adopted. All comparisons will then be made 

with this standard, which will now be derived. 

The standard system of interest is depicted in figure 4; it is a special 

case of figure 1 with g(x} = x for all x, that is, the full-wave square-law 

rectifier. Since the output for figure 4 is 

z(t) = [dT h(T) x^t-l) . (42) 

then mean 

m^ = z(t) = H(0) a' , (43) 

where we utilized (5). The total output power (ac and dc) is 

2 
z^t) = df |H(f)p P 2(f) , (44) 

x 

2 
in terms of the spectrum of process x (t). But since the correlation of 

2 
x (t) IS, for Gaussian process x(t). 

R 2(T) = x^(t) x^(t--0 =  a^  ^  2a^  p^r) , (45) 
x 

2 
then the spectrum of x (t) is 

P ^(f) = o"^  Mf) + 20"^ P^^^f) . (46) 
X 

15 
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X(t) 
Squarer 

x^(t) FiIter 

h(r),H(f) 

z(t) 

Figure   4.   Full-Wave   Square-Law  Detection   System 

-W  W-2f, 
f 

Figure 5. Spectral Quantities for Variance cr^,(43) 
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Here, and in the following, we will use the notation 

P^'^^f) = J dT exp(-i2irfT) P^{T)   . (47) 

Thus, P^ '(f) is the k-fold convolution of 

P^^^f) = J dr exp(-i2irfr) /=(r) . (48) 

For the flat bandpass spectrum of major interest, P^ ^(f) is just the 

2 (1) spectrum of figure 3, without the factor o . More generally, P^ '(f) is 

(2) the spectrum of input x(t), normalized to unit area.  P  (f) is depicted in 

figure 5. Combining (43), (44), and (46), we find output variance 

a    =  la I df |H(f)|^ P^^^f) . (49) 

The output signal-to-noise ratio of our standard system follows upon 

using (43) and (49) in (16): 

H^(0) 

2aJ r df |H(f)|2 Pj^^f) ^s "  TT ; ,9 (')\  . (50) 

where we have added subscripts to differentiate hypotheses H and H . If 

we wanted to maximize y by choice of the filter, (50) indicates that the 

relative power transfer function H(f)/H(0)  of the low-pass filter should 

be made as sharp (narrow) as possible about f = 0, where the power ratio must 

necessarily be 1. But since, in practice, the effective duration T of filter 

impulse response h(T) is limited, there is an upper limit to Y . 

17 
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Rather than attempt to derive this absolute optimum value of y ,  we 

develop an approximation to y    in the case where the filter width, 1/T, is 

much narrower than the input spectral width, W; that is, TW » 1, which 

corresponds to a long averaging time assumption. In this case, (50) yields 

the approximation 

H^(0) 

^s " 
i^Wo - ^ 

2P[,^\0)  fdf |H(f)|^ 

f[dT Mr)] ^ (.W, - 1) ' 

2   Jdf P^""^ (f) jdr h^(r) 

(A'4 - ^ 2 
= Y, . (51) >2   - 'a ' 

^ (f) 

where 

j^dr h^{T) 
(52) 

is defined as the effective duration of filter impulse response h{T). The 

last quantity in (51) is the desired approximation, y , to be utilized as a 

basis of comparison.  In deriving this result, we have utilized (47) in the 

form 

P^^^O) = J dT p^(T) = Jdf P^^) (f) . (53) 

and  Parseval's  theorem for the  Fourier transform pair in  (48). 
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For the flat bandpass spectrum of figure 3, where W measures the width of 

the positive frequency components of the input spectrum, that is, 

Pj,^^f) =^ for   \f tf^\<^, (fe>^. Q>i). (54) 

the approximation in (51) becomes 

n       \ 1 Y = TW — - 1    for flat bandpass spectrum with Q > r . (55) 

If the input spectrum is modified from figure 3, this result must be 

re-evaluated from (51). In fact, the interpretation of bandwidth W must be 

done carefully and with precision. 

In the further special case where hypothesis H^ corresponds to noise 

only, and H to signal plus noise, then 

a, = S + N  under H, 

o^ =  { ^' (56) 
N  under H^, 

where N and S are the input noise and signal powers, respectively, and (55) 

reduces to 

Yu = TW/-I   for flat bandpass spectrum , (57) 

This, finally, is the basis of comparison, for the standard system 

signal-to-noise ratio, to be used for all the quantitative results for the 

flat bandpass spectrum, and for the two hypotheses described in (56). There 
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is a certain amount of arbitrariness in adopting (57) as a basis; however, if 

two systems are both compared with (57), then the difference of those two 

relative signal-to-noise ratios is exact, regardless of the basis. 

It is very important to observe that the approximation for the standard 

system output signal-to-noise ratio y in (51) is not the optimum or maximum 

value of the more general result y    in (50) for the square-law system 

depicted in figure 4. Rather, y.  will be greater than y.  in some cases. 
S a 

To see this, the terms in the system output variance (denominator of (50)), 

are illustrated in figure 5. It is obvious, since everything is nonnegative, 

that 

Jdf |H(f)|^ p[)^^f) < P^^^O)  fdf |H(f)|^ . (58) 

Since this right-hand side is just the quantity in the denominator of the top 

line of approximation (51), this means that Y > y . 
s   a 

More generally, this means that we have to expect the possibility that 

the general system output signal-to-noise ratio in (16) will have Y > Y^ in 

some cases. Nevertheless, because of its simplicity, YU in (57) will be kept 

as our basis of comparison for the various systems. However, the interpreta- 

tion of T and W must be carefully noted for each case. 

The exact way in which we use the basis Y^ in (57) is as follows: for 

the general nonlinear system in figure 1, we set its output signal-to-noise 

ratio Y equal to the basis, that is, set 

20 
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-4=™i (59) 

where S/N is the actual input signal-to-noise ratio to the general nonlinear 

system, and (S/N) is the input signal-to-noise ratio to the standard 

system. Then we solve (59) for the required input signal-to-noise ratio S/N 

to achieve this level of performance, and compute the decibel difference at 

the input. 

dB = 10 log [ S/N (S/N) 
s J 

(60) 

relative to the standard system input signal-to-noise ratio. 

In general, this quantity will be a function of the standard system input 

signal-to-noise ratio (S/N) ; however, for low input signal-to-noise ratio, 

it is independent of (S/N) .  It affords a measure of how much more input 

signal-to-noise ratio is required for the general nonlinear system of 

interest, relative to the square-law standard of figure 4.  In keeping with 

the discussion above, we can expect that the quantity, dB, in (60) will become 

negative in some cases; this simply means that the performance of that 

particular nonlinear system is somewhat better than the arbitrary basis y, 

adopted in (57). 
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OUTPUT SIGNAL-TO-NOISE RATIO FOR TWO FILTER CLASSES 

The system output signal-to-noise ratio y  was derived in (41) in terms of 

the general filter impulse response h(X). In this section, we shall develop y 

in more detail for impulsive filters, as in (8), and nonimpulsive filters, as 

in (6) and (7). The latter case correponds to an analog filtering procedure. 

Impulsive Filters 

The impulse response h(r) takes the form (8) in this case, and the 

corresponding system block diagram is given in figure 2. We substitute 

(8) in (26) to obtain the autocorrelation of h(T) as 

a(T) = ^ b(n) 5(T-na) , (61) 

n 

where sequence ^b(n)^ is the autocorrelation of the filter weights: 

b(n) =  >^ w(m) w(m-n)  for all n . ' (52) 

m 

The evaluation of A(k) in (38) is immediate in this case, yielding 

A(k) = ^ b(n) p'^(nA)  for k > 1 . (63) 

n 

There follows from (18), (33), and (8), the system output mean in the form 

m 
z 

G(Q) ^w(n) , (64) 

n 
23 
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while from (37) and (63), the variance is given by 

o6 

2 

k=l 
^ G^k) ^ b(n) p^nA) (65) 

Combining these last two expressions in (16), the output signal-to-noise 

ratio for the impulsive class of filters can be expressed as 

"^I " ~^ 1 .2,,- 

M fG^(O) - 6Q(0)]' 

GQ(k) ^ B(n) p^(nA) 
(66) 

k=l 

where 

M = 

2 w(n)l 
, n    J 

.w^(n) 
(67) 

is the effective number of samples in impulsive filter response h(T) in (8), 

and 

w(m) w(m-n) 

^^^'      b(0)     ^r .2, 
^ w (m) 

(68) 

m 

is the normalized autocorrelation of the filter sampling weights [w(n)] . The 

result (66) holds for any impulsive filter with any weight sequence [w(n)] , 

sampling increment A, input levels o,, o-, input correlation PAT) ,  and 

nonlinearity g{x] . 
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Nonimpulsive Filters 

Examples of filter impulse responses in this class were presented in 

(6) and (7). In the former case, the autocorrelation (26) is 

a(T) = 
H^-¥) 
0 otherwise 

for JT1< T 

, box car filter, (69) 

while in the latter case. 

a(r) = 
1 

2 RC 
exp 

(-^) 
for all T  , RC filter (70) 

If we substitute (38) in (41), the output signal-to-noise ratio for the 

nonimpulsive class of filters can be expressed as 

^N = 

T [G^(0) - GQ(0)] 

JT GQ(k)  f dTa(T) PQ(T) 

k=l 

where 

T = 
fpT h(r)] 
JdT h^(T) 

is the effective duration of filter impulse response h(r), and 

(71) 

(72) 

oc(T) a(0) 

Jdu h(u) h(u-T) 

Jdu h^(u) 

is the normalized autocorrelation of the filter response. The result 

(71) holds for any input levels a,, a^,   input correlation pr.{z),  and 

nonlinearity g (x]. However, it does not cover a filter containing any 

(73) 
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impulses, since the denominator integral in (72) and (73) is infinite then. 

Nevertheless, the corresponding result in (66) for the impulsive filters can 

be derived as a limit of a set of progressively narrower pulses at multiples 

of increment A. Thus, (71) does have the capability of covering the most 

general filter structure, if manipulated properly. 

Long Averaging Time Assumption 

The results in (66) and (71) for the output signal-to-noise ratio 

simplify somewhat when the averaging time of the filter (MA or T) is much 

larger than the correlation time (1/W) of the input process x(t) under 

hypothesis H^.. In the impulsive filter case, this means that the sum on n 

in the denominator of (66) can be approximated according to 

^ B(n) p^(nA) = 0(0) ^ p^(nA)=^ PQ(nA)  for k > 1 ,        (74) 

n n       n 

leading to approximation 

M [G^(0) - GQ(0)]^ 
Yj = -^    \      ;  z:z   I • (75) 

k=l 
^ G^(k) 2 p^(nA) 

It is interesting to observe that the exact detailed values of the weights 

{w(n)] in impulsive filter response (8) are immaterial to the value of (75), 

except insofar as they affect effective number M via (67). This simplifi- 

cation is not possible for the general averaging time result in (66), which 

depends on the weights through their normalized autocorrelation sequence 

[|3(n)^ in (68). 
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On the other hand, for nonimpulsive filters, the long averaging time 

assumption means that the integral on T in the denominator of (71) can be 

approximated according to 

J dT a(r) p^iT) = a(0) J drpQ(r) = J d^ p^(r)  for k > i .      (76) 

leading to approximation 

T [6^(0) - Go(0)7' 

k=l 

Analogous to the observation above, the shape of the detailed impulse response 

hCT) is immaterial to the value of (77), except as it affects the effective 

duration T via (72). 

The approximations in (75) and (77) for the long averaging time 

assumption are not used in the numerical results that follow later. Rather, 

the exact result (66) for impulsive filters, and (71) for nonimpulsive filters, 

are extensively utilized. Also the danger of using the long averaging time 

assumption when inappropriate is illustrated by a numerical example in a later 

section. 

Narrowband Input Spectrum 

We now return to general output signal-to-noise ratio y for arbitrary 

averaging time in (71) and consider, for the moment, the case of a very 

narrowband input spectrum under HQ. That is, let normalized correlation 
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PQ(T) = r(T) C0S(2irf^T+ «l(T)) , (78) 

where center frequency f is much larger than the highest frequency contents 

of envelope r(T) and phase 0(T); this is called a high-Q input spectrum. Then 

the integral in the denominator of (71) becomes 

dr a(r)   PQ(T)   =   J  dTa(T)   r\r)   C0S^2irf^r+ 0(T))   = 

cos   e 
0        for k odd 

dr a(r)  r^T) = 

2^ U/2/   ^ 

(79) 

dr o(r)  r (T)  for k even 

Here,  the k-th power of the cosine varies so quickly with T that we replaced 

it by its average value and removed  it from under the integral  on T. 

Substitution of  (79)  in (71)  yields the system output signal-to-noise ratio 

T  [G^(0)   - Go(0)]- 

'N8 OOT 

k=2 
even 

^o(^) ^ 
' k 

k/2 )i 
(80) 

dra(T)   r{Z) 

for a narrowband input spectrum. 

This form for ^^j.  leads to an interesting conclusion regarding 

symmetric full-wave rectifiers versus half-wave rectifiers. Namely, reference 

to the defining relation (32) for nonlinearity coefficient G(k) reveals that, 

for k even, a symmetric full-wave rectifier has a value of G(k) exactly double 

that for the corresponding half-wave rectifier. However, since (80) only 
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involves the even k values, whether a full-wave rectifier or half-wave 

rectifier, this factor of 2 cancels, and output signal-to-noise ratio YKID "in 

(80) is exactly the same for a symmetric full-wave rectifier as for a 

half-wave rectifier. This conclusion holds for any rectifier g[x], not just 

the u-th law rectifiers in (3) and (4). It also holds for any filter h{T) and 

normalized correlation envelope and phase r(T) and 0(T) in (78), and is not 

limited to large averaging times or small input signal-to-noise ratio. The 

only restriction is the required high Q of the input spectrum. 

This conclusion regarding identical y  values for symmetric full-wave 

rectifiers and half-wave rectifiers is also physically reasonable for a high-Q 

input, in that no significantly different information is contained by the 

negative lobes of the waveform x(t) when its envelope and phase are slowly 

varying relative to the center frequency. 
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i>-TH LAW RECTIFIERS 

Up to this point, all the relations involving nonlinearity coefficient 

G(k), defined in (32), have been general. We now specialize to the symmetric 

full-wave and half-wave u-th law rectifiers mentioned in (3) and (4). 

Full-Wave Rectifiers 

The nonlinearity of interest here is 

g{x} = jxl"  for all x    (v > 0) , (81) 

which is a symmetric full-wave rectifier. Substitution of (81) in (32) yields 

G(k) = a"   J dw Iwr t5(w) He|^(w)  for k > 0 , (82) 

where 0(w) is defined in (21), and He.(w) is a Hermite polynomial 

[3, (22.2.15)]. Since He (w) is odd in w for k odd, it immediately follows 

that 

G(k) =0  for k odd . (83) 

On the other hand, 

G(k) = 2o" \   dw w" i8(w) He (w)  for k even (0, 2, 4, ...) . (84) 
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In order to evaluate this integral, we first define the quantity 

L(k) = J dw w" 0(w) He|^(w)  for all k > 0 . (85) 

0 

It should be noted that L(k) is a function of w, in addition to the explicitly 

indicated dependence on k; however, it is independent of a.    A recurrence for 

L(k) is derived in appendix A: 

L(k) = (v+2-k) L(k-2)  for all k > 2 . (86) 

with starting values 

L(0) = 2^''   .'^  r(^) .  L(l) = 2 2  /^ p|^| ^ 1^ (87) 

Thus very high order values of L(k) can be quickly evaluated with the aid of 

just two gamma function computations. 

The nonlinearity coefficient in (84) is therefore expressible as 

6(k) = Zc''  L(k)  for k = 0, 2, 4  (88) 

or 

G(k) = (v+2-k) G(k-2)  for k = 2, 4, 6  (89) 

with starting value 

V     _ 1 
u .2        2    n/v+1 G(0)   =  a"  2'  u     '    rC^)   ■ (90) 
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We now utilize the results in (88) and (83) to express the impulstye filter 

system output signal-to-noise ratio in (66) as 

^ U(k) ^ B(n) pQ(nA) 

k=2      n 
even 

where subscripts IF denote the impulsive filter full-wave rectifier case and 

where we have also defined sequence 

2 

U(k) = 77 W^     ^°^  all k > 0 . (92) 

This latter sequence has a simple recurrence, as seen by reference to (86), 

namely 

2 
U(k) = U(k-2) ^lll~_)] forallk>2. (93) 

with starting values,  from (87), 

rid U(0)  •  1   ,      U(l)  . 2   pvttiy    • (9") 

In fact, since (91) only involves even k, y  can actually be evaluated 

without the aid of any gamma functions. 

An exactly analogous procedure applied to nonimpulsive result (71) leads 

to output signal-to-noise ratio 
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flip -  oo       r        \i ' ^^^^ 
2 u(k)   dra(T) P5(T) 
k=2      ^ 
even      ■ 

where subscripts NF denote a nonimpulsive filter and a symmetric full-wave 

rectifier. 

Full-Wave Square-Law Rectifier 

Here we specialize the above results to the case of u = 2, that is, 

qlx\  = X for all x. There follows, upon use of (93) and (94), the 

significantly simpler results 

Tip(« = 2) =  ^'   :f  (96) 
2 ^ B(n) p^(nA) 

from (91), and 

YNF^" = 2) =  y-^ ^  (97) 
2 J dr a(T) p^(r) 

from (95). This fortuitous situation occurs because the recurrence (93) 

generates zero coefficients for k > 4, when u = 2. More generally, v  even 

would also terminate the recurrence at k = v + 2. 
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Full-Wave Linear Rectifier 

This special case corresponds to u = 1, that is, g [x] = 1x1 for all x. 

Then 

Yjp(w = 1) =  oo 
" ('^^'% - 0 

U(k) 2_   B(") ^0^"^^ 
k=2      n 
even 

from (91), where l.U(k)} is given by (93) with u = 1. Also, from (95), 

YNF(" = 1) = 

k=2 
even 

h /-o - ') 
u(k) J dra(r) PQ(X) 

Half-Wave Rectifiers 

We now return to general values of power law v, but to half-wave 

rectifiers characterized by 

g[x} = 
X for X > 0 

0 for X < 0 

(98) 

(99) 

(100) 

Substitution of (100) in (32) yields nonlinearity coefficient 

G(k) = a    L(k)  for all k > 0 , (101) 
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where L(k) was defined in (85). When (101) is utilized in (66), the result 

for the output signal-to-noise ratio is 

" (■'V^l -') 
'IH oo 

k»l 

U(k) ^ B(M) p^(nA) 
(102) 

where IH denotes impulsive filters and half-wave rectifiers. This result is 

identical to Yjr in (91), except for the inclusion of all the odd k values 

here. Similarly, (71) leads to . 

'NH 06 

k«1 

r-i^-s - ^) 
U(k) J dra(-r) p^(T) 

(103) 

for nonimpulsive filters and half-wave rectifiers, NH. This is identical to 

Y,,^ in (95) except for the inclusion of all the odd k values here, in the 
Nr 

case of half-wave rectification. 

Half-Wave Square-Law Rectifier 

When we set u = 2 in the results above, and refer to (93), we find that 

TIH(« = 2) 
" (-^-0 - ) 

B(n) p^(nA) + 2 U(k) ^ S(n) ^^(nA) 
(104) 

k=l 
oftd 
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while 

YNH('' = 2) 
2 Jdr aCn PQ(r) + ^ U(k) I dTa(r) PQ(T) 

k=l 
odd 

(105) 

Neither of the series in odd k terminate, since the numerator in recurrence 

2 
(93) is (4-k) , which is always nonzero for k odd. 

Half-Wave Linear Rectifier 

Upon setting u = 1 in (93) and (94), we obtain 

U(0) = 1 , U(l) = I . U(k) = U(k-2) [^i^ for k = 2, 4, 6  (106) 

with all other U(k) zero. Then (102) and (103) yield 

YIH(" = ■>) OO 

\  ^ B(n) pQ(nA) + ^ U(k) ^ B(n) pQ(nA) 

n k=2      n 
even 

(107) 

and 

TNH(- = 1) 
(-'i^'-o - ")'' 

iJdTa (r) PQ(r) + 
oS^ 

U(k) I dr a(T:) pj(-r) 

k=2 
even 

respectively. 

(108) 

37 



TR 7633 

The programs to be furnished later are not limited to the special cases 

in (96)-(99) and (104)-(108), but, in fact, cover arbitrary values of v. 

Equality of Performance for v =  1 

It is interesting to observe that these last two results for the linear 

half-wave rectifier are identical to the corresponding earlier results for the 

symmetric linear full-wave rectifier in (98) and (99), except for the 

additional term for k = 1 here. Thus, for nonimpulsive filters, 

if rdTa(r) PQ(r) = 0 (109) 

in (108), then the output signal-to-noise ratios of the linear symmetric 

full-wave rectifier and linear half-wave rectifier are the same. But since, 

from appendix B, 

, [df |H(f)l^ Pj^^f) 
dra(r) p^{T) = ^^-r f—;^.  . (nO) 

^ "        Idf |H(f)p 

the only way (109) can be true is if the filter power transfer function 

|H(f)|  and the input spectrum under HQ, namely pi (f), do not 

overlap; see figure 6 for the flat bandpass input spectrum example. Then 

approximately, if 

then (109) is substantially satisfied and the linear half-wave rectifier and 

the symmetric linear full-wave rectifier have similar output signal-to-noise 
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-f. i   f-   i 

t'(F) 

f 

Figure G. Spectral Quantities -Tor (110) and (112) 

ratios. This lower bound on Q in (111), relative to the inverse time- 

bandwidth product, will be encountered again later, when we investigate 

general v-th law rectifiers for general bandpass spectra, as delineating a 

distinct dichotomy in performance for half-wave rectifiers. 

It will be recalled, in an earlier section dealing with narrowband input 

spectra, (78)-(80), that the output signal-to-noise ratios of a u-th law 

half-wave rectifier and a symmetric full-wave rectifier were identical for all 

V,   if the Q of the input spectrum was very large. The result here, 

particularly (111), is a much milder requirement that achieves the same 

result, but only for the linear device, u = 1. The reason that a much more 

moderate requirement on Q will suffice for u = 1 is that all the odd terms for 

k > 1 are already absent from (107) and (108), whereas they were suppressed in 
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(79) only by the use of the very large Q assumption. So, for a linear 

rectifier, virtual equality of p6rformance for a half-wave rectifier and a 

symmetric full-wave rectifier can be expected for a very moderate value of Q. 

Larger values of v would require larger Q values for the same result to 

obtain. These observations will be borne out by numerical results to follow 

later. 

For the impulsive filter result of (107), the analogous result to (110) 

is also derived in appendix B, giving 

^              ]df |H(f)l2 Pl^^f) 
A > B(n) p (nA) =  f ■ -j-^  . (112) 

n ,y'   1^(^)1 
where the filter voltage transfer function is now 

H(f) = ^ w(n) exp(-i2irfAn) (113) 

n 

from (5) and (8). The integral in the denominator of (112) is over any 

frequency interval of length 1/A, which is the period in f of the filter 

voltage transfer function H(f). The numerator integral in (112) is over all 

f, but could be limited, if desired, to the fundamental frequency interval 

(-1/2A, 1/2A) if normalized input spectrum P^ ^(f) is replaced by its 

aliased version 

Pjj^^f) =^ Pj^^(f - ^y  for all f . (114) 

where the sum is over all n from - «<» to + «<> . 
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In any event, (112) will be zero if the filter power transfer function 

JH(f)|  and input spectrum pi (f) do not overlap. Figure 6 is again 

applicable, but now with the addition of major lobes of |H(f)|  at f = n/A 

for all n. Not only must (111) be met in order to avoid overlap near f = 0, 

but the other major lobes of |H(f)|  must not overlap Pi (f). This 

requirement can be met, for example, by keeping the lower skirt, of the lobe 

of lH(f)|  centered at f = 1/a, above the highest frequency of the input 

spectrum: 

A - T > ^h = ^ -^ 2 = ^Q ^ 2 • 

that is, sampling frequency fj = 1/A must satisfy 

(115) 

i>fw^Q^2 • (116) 

This requirement is in addition to that of (111). 

Actually, (116) is a sufficient condition for non-overlap in figure 6, 

but is not always necessary. In particular, for larger Q, the possibility 

exists of deliberately undersampling (violating (115)) and yet achieving 

nonoverlap of the aliased spectral components of (114) with the filter lobe at 

f = 0. This will be demonstrated by example in the results section, not only 

for u = 1, but for other v  values as well. Here we have resorted to the 

equality 

df |H(f)|^ P^hf)  =   df |H(f)| ^ °^^^ 
> 

'/4 

P^"(f) . (117) 

based upon the use of aliased spectrum (114) and the periodic character of 

filter H(f). 
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INDEPENDENT SAMPLES 

This section will address the discrete detection system of figure 2, 

where sampling increment A in (8) is taken such that the samples of Gaussian 

process x(t) are statistically independent. This can be accomplished by 

taking A large, in general. However, at least in the special case of a flat 

low-pass spectrum under H^^, as in figure 3 with 

f^ = ^ . Q = J . Pghf)  = ^  for Ifl < W , (118) 

then the choice A = (2W)  in corresponding normalized correlation (15) gives 

[l for n = o] 
PQ(nA) = sinc(n) =< f. (119) 

lO otherwise) 

which also means independent samples. (Another special case is afforded in 

the flat bandpass spectrum case, by choosing A = W~ , irrespective of center 

frequency f ; see (13) and refer to (119).) 

For this section only, dealing exclusively with independent samples, we 

will not yet specialize to the case of v-th law rectifiers, but temporarily 

allow general nonlinearities. Then general result (66) for the system output 

signal-to-noise ratio reduces to 

M [G^(0) - Gg(0)]^ 
Tj = —55—^ 2   ^°'' independent samples, (120) 

k=l 
ki ^o(^) 
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by use of (119). We observe immediately that the only way the filter weights 

{w(njl enter this result is via effective number M defined in (67), whether 

large or small; normalized autocorrelation sequence {B(n)j in (68) is not 

relevant in this special case. 

Numerical evaluation of the particular infinite series in the denominator 

of (120) can be circumvented, as follows; from (34) and (28), 

GO 

k=l 

Then, also using (33), (120) becomes 

M (m , ~ "1 n) 
YT =  ^^2 ^   ^°'" independent samples . (122) 

But these latter quantities can be obtained directly from the moments of the 

nonlinearity output, 

m 
y 

= y(t) = g{x(t)] = J dx g{x} p^^^x) , 

y^(t) = g^[x(t)] = Jdx g^{x] p^^^x) , (123) 

by numerical integration if necessary, once the nonlinearity g[x] and 

first-order input probability density function p^ '(x) are specified. 
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Symmetric Full-Wave Rectifier 

We now specialize to symmetric w-th law full-wave rectifiers as in (4) 

and a Gaussian input as in (20). (123) immediately yields moments 

" 9^/2 -1 
m = o 2   IT 

2...    2u „u -1/2 n/   1 \ /-, „, V 
y (t) = o  2 ir    P[v + -\ . (124) 

Appropriate substitution into (122) gives output signal-to-noise ratio 

YTC =  \, > _ 1    for independent samples , (125) 

where we define quantity 

Equation (125) is a compact expression for the system output signal-to-noise 

ratio for any u > 0, requiring no summations. 

Special cases of (126) are 

D(l) = I . D(2) = 3 . 0(3) = ^ . D(4) = ^ . (127) 

Thus, for example, (125) yields 

Yjp(v = 2) = |(^ - 1)   . (128) 
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in agreement with (96) in this case of independent samples. 

More generally, since from (91) and (119), we have output signal-to-noise 

ratio 

s^— ^—     for ii 
M 

yjr =  —ss'^— ^—  for independent samples , (129) 
^'"   ^^ U(k) 

k=2 
even 

then comparison with (125) yields the following identity on the [u(k)7 

sequence in (92)-(94): 

k=o I    (, 2 ; 
even 

This result has been confirmed directly, by letting m = k/2, converting the 

recursion on {U(k)] to one on {U(2m)l , recognizing it as a hypergeometric 

function, and using [3, (15.1.20)]. This identity will prove to be very 

useful in the accurate numerical evaluation of general result (91) for 

symmetric full-wave rectifiers with statistically dependent samples. 

We now consider the case where hypothesis H- corresponds to noise-only 

and H to signal plus noise, that is, 

\o = S + N under H, 

«^ =1 p J   ' (131) 
o^ =    N under H^. 
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where N and S are the independent input noise and signal powers, 

respectively. When utilized in (125), we have output signal-to-noise ratio 

M 
IF  D(w) - 1 •^ ^ ^y'^ - T • (132) 

which is valid for independent samples and all values of M, v,  and S/N. 

The basis of comparison (in this section alone, for independent samples) 

will be the full-wave square-law detector, which simply corresponds to taking 

V = 2 in (132): 

M S 
^b ■ 2 IN (133) 

In keeping with the discussion surrounding (59), we now equate these last two 

expressions above: 

M 
D(v) - 1 R^i) 

u/2   i2 
- 1 

2  N, (134) 

where (S/N)^ is the input signal-to-noise ratio to the square-law system, 

and S/N is that for the general v-th law symmetric full-wave rectifier. The 

solution of (134) is 

S 
N 't^Y'(i)^T 1  for all V, (135) 
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This is the input signal-to-noise ratio required for the w-th law system to 

achieve the same output signal-to-noise ratio as for the full-wave square-law 

system, for the independent samples case. It is independent of M, the 

effective number of samples. 

Although generally a function of the actual square-law input 

signal-to-noise ratio (S/N) , in the case of low input signal-to-noise 

ratio, (135) becomes approximately 

^ i (-(">  -)''H9,      ^or{fj «    1 (136) 

This  leads to the factor 

Fp(«)  = I (2D(v)  - 2) 1/2 (137) 

by which the input signal-to-noise ratio must be increased for the u-th law 

device relative to the full-wave square-law system, and which is independent 

of the actual input signal-to-noise ratio (S/N) . Subscript F denotes 

symmetric full-wave rectifiers. 

The factor Fp(u) is tabulated in decibels in table 1 and plotted versus 

V in figure 7. They both reveal that, for low input signal-to-noise ratio. 

1.5 2.5 3.5 

10 log Fp(v) 796 288 ,062 .049 .181 .376 .625 

Table 1. Additional Input Signal-to-Noise Ratio Relative to Full-Wave 
Square-Law System; Low Input Signal-to-Noise Ratio, 

Symmetric Full-Wave Rectifiers, Selected v.   Independent Samples 
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the full-wave square-law detector is best. The linear full-wave rectifier 

(FWR), for example, requires .29'dB more input signal-to-noise ratio than the 

square-law full-wave rectifier, in order to achieve the same output 

signal-to-noise ratio (SNR). 

More generally, exact result (135) is plotted in figure 8, for various 

values of the full-wave square-law input signal-to-noise ratio (S/N) . The 

curve labelled (S/N) -» 0 is exactly that already plotted in figure 7. The 

other results for larger (S/N) seem to indicate that better performance can 

be achieved by choosing v  larger than 2, for example, v = 3.5 for (S/N) = 

0.5. However, this conclusion is completely spurious, because the square-law 

detector is, in fact, the optimum device to use in this particular case of 

independent samples of the input; furthermore, the input samples should all be 

equi-weighted. These conclusions are based on the likelihood ratio derivation 

in appendix C. This situation serves to accentuate the earlier caution that 

the output signal-to-noise ratio of a system with nonlinearities is not a 

complete descriptor of performance, and care must be exercised in the use and 

interpretation of the system output signal-to-noise ratio; see (41) et seq. 

The results in figure 8 for the higher signal-to-noise ratios cannot be used. 

Half-Wave Rectifier 

We now return to general results (122) and (123), and consider half-wave 

rectifiers as described in (3) and a Gaussian input as in (20). Substitution 

in (123) yields moments which are half of the values listed in (124). When 
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employed in (122), there follows for the output signal-to-noise ratio, 

M 
^^,   . ;    for nnc Yju =  2n(   )  - 1    ^°'" independent samples , (138) 

where D(w) was defined in (126). For example, 

W" = 2)=^fe-lj (139) 

for the square-law half-wave rectifier; compare this result with (128) for the 

full-wave rectifier. 

Generally, from (102) and (119), we have 

" C°^°o - ^ 
TTU = oe    for independent samples . (140) 

k=l 

Comparison with (138) yields the identity 

2 U(k) = 2D(v) . (141) 
k=0 

Coupled with (130), this yields 

k=l 
odd 

Thus, both the even and odd sums on U. give exactly the same value, D(u). 

The result in (142) has been confirmed directly by letting m = (k-l)/2, 

converting the recursion on [u(k)} to one on ^U(2m+1)}. recognizing it as a 

hypergeometric function, and using [3, (15.1.20)]. This identity will prove 
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to be very useful in the accurate numerical evaluation of general result (102) 

for half-wave rectifiers with statistically dependent samples. 

We now again consider the case where hypothesis H corresponds to 

noise-only and H, to signal plus noise; see (131). Then (138) for the 

output signal-to-noise ratio becomes 

M 
'IH  2D(w) - 1 1 + r - f ■ 

which is valid for independent samples and all values of M, v, and S/N. 

For small input signal-to-noise ratio, this is approximately 

(143) 

M 
'IH " 2D(w) - 1  4 ^^N 

When this is compared with the basis in (133) for the full-wave square-law 

detector, we see that the input signal-to-noise ratio for the u-th law 

half-wave detector must be increased by the factor 

(144) 

F^(v) = I  (4D(v) - 2) 1/2 (145) 

in order to maintain the same output signal-to-noise ratio. This factor is 

tabulated in table 2 and plotted in figure 9. The most striking feature of 

.5 1 1.5 2 2.5  2.633 3.5 

10 log FH(V) 5.18  3.16  2.35  1.99  1.87  1.865  1.90  2.03  ;?.23 

Table 2. Additional Input Signal-to-Noise Ratio Relative to Full-Wave 
Square-Law System; Low Input Signal-to-Noise Ratio, 
Half-Wave Rectifiers, Selected v. Independent Samples 
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these results is the large degradation, relative to the full-wave square-law 

system, suffered by employing a- half-wave rectifier for independent samples. 

For example, a linear half-wave rectifier requires an additional 3.16 dB input 

signal-to- noise ratio in order to realize the same output signal-to-noise 

ratio as a full-wave square-law detector, while the square-law half-wave 

rectifier requires 1.99 dB additional input signal-to-noise ratio. 

Amelioration of this degradation in the case of statistically dependent 

samples will be demonstrated later for bandpass spectra with various values of 
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FLAT BANDPASS SPECTRUM AND BOX CAR FILTER 

In this section, the input spectrum is taken to be flat in a bandwidth 

W about center frequency +f ; see figure 3. The Q of the spectrum will be 

varied from its minimum of 1/2 to values large enough that the limiting 

performance achieved by a narrowband spectrum is virtually achieved. 

The sampled version of the detection system, depicted in figure 2, will 

be considered, with the weights {w(n)\ in the accumulator set equal to the 

same value; this is the box car filter of (10). Sampling increment A is 

arbitrary, as is the power law v  of the half-wave and full-wave rectifiers to 

be considered. When A is taken very small, the system performance will 

approach that for a nonimpulsive filter; thus, there is no need to 

additionally evaluate the nonimpulsive results of (95) and (103). On the 

other hand, when A is taken large, the effects of undersampling will become 

apparent. 

The basis of comparison for the u-th law rectifiers considered here has 

been delineated in an earlier section, in particular, in the discussion 

surrounding (59) and (60). We confine the numerical results for the decibel 

difference in (60) to low input signal-to-noise ratio, and specialize the 

general results in (91) and (102) for symmetric full-wave and half-wave 

rectifiers, accordingly. The detailed computational procedure is presented in 

appendix D, for both the symmetric full-wave rectifier and the half-wave 

rectifier. Sampling increment A is related to integration time or observation 

time T according to 
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T = MA , (146) 

where M is the number of samples employed in box car filter (10). 

Full-Wave Rectifier; Variable Sampling Increment 

In this subsection, the nonlinear detector is taken to be a u-th law 

full-wave rectifier. The first result in figure 10 gives the additional 

signal-to-noise ratio in dB required by the full-wave rectifier relative to 

the standard of (57), for TW = 50, Q = 1/2, and M varied from 50 up to 500. 

Since a is given by (146) in terms of integration time T and number of samples 

M, there follows, for the sampling frequency f = 1/A, the ratio 

~W " WA " TW • ^^^^^ 

Thus, for example, M = 100 here corresponds to a ratio of sampling frequency 

f to bandwidth W of 100/50 = 2; since Q = 1/2, this value of H corresponds 

to sampling of an input process with a lowpass spectrum, at twice the highest 

frequency, meaning independent samples. These frequencies are indicated in 

the figure. The dB numbers entered at this value of M on figure 10 for v = 1, 

2, 3, are in fact exactly those already listed earlier in table 1 for 

independent samples. 

Increasing M to 200 leads to a sampling frequency 4 times f.(= W), and 

to dB values virtually equal to the saturation values entered at M = 500. 

Thus, it is possible to lower the required input signal-to-noise ratio by 

.133, .018, .077 dB for u = 1, 2, 3, respectively, by employing larger M 

values than lead to independent samples. The slightly negative dB values for 
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large M, achieved by the full-wave rectifier with « = 2, are consistent with 

the discussion surrounding (58),'and merely reflect the fact that the standard 

is not the absolute optimum output signal-to-noise ratio. 

On the other hand, decreasing the sampling frequency below 2fu,  that 

is, decreasing M below 100 for this example of TW = 50, leads to a significant 

degradation of performance, as witnessed by the rapid rise of the dB curves in 

figure 10, to the left of M = 100. 

In figure 11, the only change is to increase Q to 5/6; this is a flat 

bandpass spectrum. Since, in general, using (12) and (146), the ratio 

S _      2  _ M     1 f T AQ\ 
ff,  AW(1 + 20) " TW Q ^ 1 • ^"^"^ 

then the value of M = 133 in figure 11 corresponds to f = 2f. = (8/3)W. 

Again, this is seen to correspond to a prominent knee of the performance 

degradation curve. Increasing M to 250 realizes essentially the same input dB 

values as for M = 500; however, for u = 2, M need only be increased to 150 in 

order to essentially attain the large-M asymptote. It is worthwhile noting 

for future reference that the frequency ratios in (147) and (148) are directly 

proportional to M, the number of samples employed in the box car filter. The 

seemingly anomalous behavior of figure 11 near M = 75 is more pronounced in 

the next figure and will be explained there. 

In figure 12, the only change is to increase Q to 2, while keeping 

TW = 50.  Reference to (147) and (148) reveals that M = 250 now corresponds to 

58 



TR  7633 

z 
en 

> 

93 

m 

1.8 

1.4 

.2 

-.2 

\. 

^ t'r i i 1 n 
1 

/ 
^ 

r^^ // \\ 4-2- ; = 5W 

' 

-,on 

^=k . I b ' 
lOZ 

^,031 

.oiz 

.060 V 
-,032 

V = 3~ fv^f \ 
_ii^i_ 1 

-7T5-H 

5=2 )>=2 

) 100 200 300 400 500 
Number  of  Samples,   M 

Figure   12.   Flat  Spectrum,   Box  Car  Filter, 
Full-Nave  Rectifier,   TW = 50,   0=2 

-2 
;o) 

Figure   13.   P^'Cf)   for   f, =  fu =  2.5W   ;   0=2,   M=125 

nCO 

fA 
Figure   14.   P"(f)   for   f^ =   1.2f^=  3W   ;   0=2,   M=150 

59 



TR 7633 

f = 2f. = 5W; there is a slight improvement by increasing M to 300. 

However, the most striking feature of this figure is the return of the 

required input signal-to-noise ratio dB values to very low levels for M in the 

range (125,150). To explain this behavior, we first note from (147) and 

(148) that fj " ^h " ^'^^  at M = 125, while f^ = 1.2f^ = 3W at M = 150; thus, 

the sampling rate is still larger than twice the bandwidth W of the input 

process (and remains so until M decreases to 100). However, since f is 

smaller than 2f. , we have an example of undersampling, without significant 

loss in performance. 

The mathematical explanation of what is happening requires a close 

examination of the denominator of the system output signal-to-noise ratio, 

Yjp, in (91). In appendix E, some useful frequency domain representations 

of the denominator of (91) are derived. In particular, a combination of 

(E-8) and (E-12) yields the approximate result 

^ B(n) p^(nA) = 1 J df [p(^^f)]  . (149) 
'A 

where 

p(^)(f) = ^ p(^)(f -l)     for an f (150) 

(k) 
is the aliased (periodic) version of P  (f), which, in turn, is the Fourier 

transform of p  (I); see (47). The approximation (149) is valid when the TW 

product is large; see (E-8) for details. 
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The leading term in the denominator of signal-to-noise ratio y      in 

(91) is equal to U(2) times the result (149). The latter quantity is the 

average value under the square of the aliased input spectrum. In order to 

realize large values of y , then (149) should be small. Plots* of 

^^^^f) in figures 13 and 14 for Q = 2, with M = 125 and M = 150, 

respectively, reveal that none of the aliased lobes overlap, despite the 

undersampling; the cross-hatched lobes represent the input (unaliased) 

spectrum. Thus, the integral of (149) remains constant (and small) for M in 

the range (125,150). 

However, if M is decreased below 125, the aliasing lobes in figure 13 

bordering f = 0, for example, begin to overlap, thereby doubling the value of 

V^   '{f)   in this region. Similarly, if M is increased above 150, the lobes 

in figure 14 bordering f/f = +.75 begin to overlap. In both these cases, 

the value of (149) would increase significantly, thereby decreasing the system 

output signal-to-noise ratio y  in (91), or alternatively increasing the 

required input signal-to-noise ratio.  In order to avoid this degradation, 

overlapped aliasing lobes must be avoided, either by looking for "clean" 

regions for high Q, as in figures 13 and 14, or by sampling at rates greater 

than twice the highest frequency of the input spectrum. 

*A slight tilt has been added to the spectral shape in order to more easily 

identify which lobes result from positive and negative frequency components. 
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The results in figure 12, as well as all the other figures, have not been 

limited to considering just the k = 2 term in the denominator of the system 

output signal-to-noise ratio y,  nor have they utilized the approximations 

(149) or (E-8). Instead, they have been obtained by utilizing K = 1000 terms 

in the series, and by actually conducting the exact summations in the 

denominators of (91) and (102). The discussion above, relative to figures 13 

and 14, was presented in order to give a simple physical explanation of what 

is happening, and thereby furnish guidance to further cases of interest. 

In figure 15, Q is further increased to 3, again keeping TW at 50. 

Reference to (147) and (148) indicates that M = 350 corresponds to 

f = 2f = 7W; slightly improved performance can be achieved by increasing 

M to 400. Substantially the same performance level can be achieved, however, 

for M in the range (175,250), corresponding, respectively, to undersampling 

with f in the range 3.5W to 5W. Furthermore, there is an additional 

possibility for M in the range (117,125), with sampling frequencies in the 

range f^ = (2.34W, 2.5W); it may be verified by use of (147) and (148) that 

-^(1) 
the aliasing lobes of P^ '(f) do not overlap for this range of sampling 

frequencies (as shown in figures 13 and 14). However, only the « = 2 

full-wave rectifier achieves the level attainable at large M, whereas the 

V  = 1 and u = 3 rectifiers suffer additional degradation. This is due to the 

fact that the denominator series in (91) terminates for u = 2, but does not 

terminate for u = 1 or 3; thus, the higher-order terms in (91) cause 

additional unavoidable degradation through leakage of higher-order spectral 

terms, as indicated in appendix E. 
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Full-Wave Rectifier; Variable Q 

The curves in the previous subsection all saturated for large numbers of 
t 

samples, M; that is, the required input signal-to-noise ratio approached that 

for a continuous box car filter. Here, we will take M = 1000, meaning that we 

are effectively considering only the continuous box car filter, and look now 

at the required system input signal-to-noise ratio as a function of the Q of 

the spectrum, but not limited to the four discrete values of 1/2, 5/6, 2, and 

3 earlier. The first result in figure 16 indicates a rapid drop in required 

input signal-to-noise ratio as Q increases above .5. The region (.5,.6) for Q 

is blown up in figure 17 to better illustrate the decay. The main conclusion 

from these two figures is that once Q-.5 is larger than approximately 1, the 

required input signal-to-noise ratio is essentially independent of Q. 

To illustrate the relative independence of the results on the specific TW 

product (once it is large), figure 18 was computed and plotted for TW = 100; 

this result can be compared with figure 17 which utilized TW = 50. 

Finally, in a similar comparison, figure 11 for TW = 50, Q = 5/6 was 

rerun for TW = 100, Q = 5/6 in figure 19.  Except for the doubling of the 

abscissa values (M = 1000 vs 500 earlier), figures 19 and 11 are very 

similar. The fact that M must be doubled if TW is doubled is reasonable, 

whether that doubling comes about from increased T (more observation time) or 

increased W (higher bandwidth, meaning faster sampling). 
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i 

Half-Wave Rectifier; Variable Sampling Increment 

We win repeat the series of plots given earlier in figures 10, 11, 12, 

15, but now for «-th law half-wave rectifiers. The first result in figure 20 

gives the required input signal-to-noise ratio (relative to the standard) for 

Q = 1/2, a low-pass spectrum. The levels of required signal-to-noise ratios 

are much greater here for the half-wave rectifiers than for the corresponding 

full-wave rectifiers in figure 10. M = 100 corresponds to sampling frequency 

f^ = 2f. = 2W; increasing M to 200 essentially reaches the saturation s   h 

value attained for large M (continuous filtering). The dB numbers entered at 

M = 100 agree with those given earlier in table 1, since this corresponds to 

independent samples. (When TW is doubled to the value 100, virtually the same 

plot results when the abscissa scale, M, is also doubled.) 

When Q is increased to 5/6 in figure 21, a marked improvement in 

performance occurs. The value M = 133 corresponds to f = 2f. = (8/3)W; 

increasing M to 200 achieves saturation values, at which point f = 3f^ = 4W. 
s    h 

However, the performance relative to the corresponding full-wave rectifier 

result in figure 11 is still poorer. 

For 0 = 2 in figure 22, although there is a marked dip in the required 

input signal-to-noise ratio for M in the range (130.150), the levels achieved 

are  not as low as those possible for larger M. For example, an additional 

.24 dB is required at M = 150 for v = 1 than at M = 400 for u = 2. At 

M = 125, the dB values in figure 22 are very large; this is due to an aliased 

component, a la figures 13 and 14, abutting frequency f = 0.  This result is 
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i j      , 

distinctly different from the corresponding one for a full-wave rectifier in 

figure 12. 

The half-wave rectifier result for Q = 3 in figure 23 is somewhat similar 

to the corresponding full-wave rectifier result in figure 15. However, there 

is much more degradation here for M near 120, and moderate degradation for M 

in the range (180,250). Essentially the same performance for v = 2 is 

achieved at M = 350, f^ = 2f^ as at M = 500, f^ = {20/7)f^, but losses 

are encountered for sampling rates between these values. 

Half-Wave Rectifier: Variable Q 

To determine the explicit dependence of performance on the Q of the input 

spectrum, we eliminate the dependence on M, by setting M equal to a large 

value, namely 1000, thereby essentially realizing a continuous box car 

filter. Then we vary Q over the range (.5,3) and plot the results for TW = 50 

in figure 24. Saturation is achieved for Q > 1.5 at acceptably low values; 

however the performance degrades considerably for small Q. 

Comparison of figure 24 with the corresponding result in figure 16 for a 

full-wave rectifier (both with TW = 50 and M = 1000) reveals that by the time 

0 reaches 1.5, the half-wave and full-wave rectifiers realize virtually the 

same performance level, regardless of the value of u. For example, the dB 

numbers listed above Q = 3 are almost identical. This confirms the results 

anticipated in the analysis presented earlier in (78)-(80) et seq. 
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The region (.5,.6) for Q is blown up in figure 25; it indicates 

approximately that if 

1  4 
Q-2>TW' (151) 

a plateau in performance is essentially realized, while a more gradual 

improvement takes place for larger Q. This same bound on Q was previously 

encountered in (111) when we discovered the condition under which the linear 

half-wave rectifier and the symmetric linear full-wave rectifier have similar 

performance. The analysis in (109)-(117) is again directly relevant here in 

regards to overlapping aliased spectral lobes. 

If TW is increased to TOO, figure 26 illustrates very similar behavior, 

except that the sharp transition region near Q = 1/2 is approximately half as 

wide; this is consistent with (151). 

In a similar vein, for a fixed Q of 5/6, a comparison of results for 

TW = 100 in figure 27 can be made with the corresponding earlier result for 

TW = 50 in figure 21. Except for the doubling of the M scale in figure 27, 

the two sets of curves are virtually identical. 

71 



TR 7633 

z 
93 
> 

to 

m 
13 

2.5 

1.5 

.5 

\ \    —— . 1^ = 3 

u= I — 

.52 .58 

.SS 

.30 

.54       .5G 
Quality Factor, Q 

Figure 25. Small Q Variation, Half-Wave 
Recti-Fier, TW = 50, M = 1000 

.B 

Z 
tn 

> 

01 

T3 

2.5 

.5 .52 58 .54       .58 
Quali ty Factor, Q 

Figure 26. Small Q Variation, Half-Wave 
Rectifier, TW = 100, M = 1000 

.6 

72 



TR 7633 

3.5 

3 

2.5 

0) 
> 2 
+» 

1.5 

T3 
1 

\ 

^ 
\     \ 

■f,= 2 ^|v / 

\ 

\V 
.77 

, .32 
.23 /■'s'' 

Jf,-4V 

\t 
N .IS- 

 »— 
-^ 

y=3 

1*= 1 

800 ) 200 HI 400 600 
Number   o-f   Samples,   M 

Figure   27.   Flat   Spectrum,   Box   Car   Filter, 
Half-Wave  Rectifier,   TW  =   100,   Q  =  5/6 

,42 

IS- 
13 

1000 

73/74 
Reverse Blank 



TR 7633 

OTHER SPECTRA AND FILTERS 

Gaussian Spectrum 

All the previous results pertained to the flat bandpass spectrum of 

figure 3. In order to ascertain how important the details of the input 

spectrum are, we consider in this subsection the input normalized correlation 

p{T)  = cos(2irf^T) exp (-fwV), (152) 

with corresponding spectrum given by (47) as 

P^^^f) 
2l/2w 

exp -2ir W 

2-1 

+ exp -2ir W 

2-1 

(153) 

This is a pair of Gaussian lobes centered at ±f 

It should be observed that 

,df exp 2 f " '^ 
,^2 

i df exp -2ir| 1^ 
W 

2-1 = W . (154) 

independent of center frequency f . Thus W in (152) and (153) is the 

effective or statistical bandwidth of the positive lobe of input spectrum 

P^  (f). as if the negative lobe were absent. Also, the relative value of 

the positive lobe at frequencies f = f^. ± W/2 is exp(-ir/2) = .208 = -6.82 dB. 
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More generally, the effective bandwidth of the complete spectrum 

P^^^f) is 

[fdf P^^^fJ ^     1     ^     2W 

Jdf p(^)'(f) " Jdf p(^)'(f)'^ .exp(-W) 
2 . (155) 

Unfortunately, this depends on Q = f /W. If we were to use this latter 

result in standard output signal-to-noise ratio y^ in (51), we would have 
a 

^'A - ^' 
^a " ™ "^  2 (^5^) 1 + exp(-4irQ ) 

and (66) would yield 

° \"/  1 + exp(-4irQ^) 

The dependence on Q is undesirable, although it is a weak dependence; for 

example, for Q = 1/2, the exponential in (157) is .043. Hence we drop this 

dependence, and use the usual basis (57) again. 

If we use (91) for y^c o"" (^02) for y , with the S+N versus N 
1 r in 

hypotheses of (56), and a small input signal-to-noise ratio, we have 

- ^ 4 (N) . 
^I(F,H) -   2    * 

where 

2 -^ U(k) ^B(n) PQ(nA) . (159) 
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the sum being over k = 2, 4, 6, ... for full-wave rectifiers, and over 

k = 1, 3, 5, ... for half-wave rectifiers. If we now equate the output 

signal-to-noise ratios, that is, set 

•'I(F,H)-^^=™(NJ^ • <i«" 

then there follows factor 

/   \l/2 S/N   2 /TW ■^-\ 
(S/N)^ =!(^^y 

This is the input signal-to-noise ratio required, relative to basis (57). 

Recall that W is now the effective BW of the positive frequency lobe; see 

(154). 

Plots of the relative increase in input signal-to-noise ratio, as given 

by (161) and (159), are presented in figures 28 and 29 for the full-wave and 

half-wave rectifiers, respectively, for TW = 50 and Q = 5/6. These should be 

compared with the corresponding flat bandpass spectrum results in figures 11 

and 21, respectively. Except for a general smoothing in figures 28 and 29, 

due to the smoother Gaussian spectrum (153), the results are very similar. 

Saturation is essentially reached at M = 200, which corresponds to sampling 

frequency f = 3f. = 4W. 
s   h 
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-6 dB/Octave Spectrum 

2 
In this section, the input spectrum is taken to have a 1/f shape in 

the band (f-.,fp). There is a difference in this example between the 

bandwidth W = f^ - f-i and the effective bandwidth, W , which is 

developed in appendix F. The pertinent equations for this case (as well as 

the spectral shapes f for n = -2,-1,0,1,2) are also presented in appendix 

F. The results for TW = 50 and Q = 5/6 are given in figures 30 and 31 for 

full-wave and half-wave rectifiers, respectively. They are very similar to 

the corresponding earlier results with the same parameter values. 

RC Filter 

All the previous examples have employed a box car impulse response, as 

given by (10). We now replace this assumption by one in which the impulsive 

filter weights are given by samples of an RC filter response, with effective 

duration T = 2 RC; see (52) or (72). That is. 

w(n) = 1^ expC- ^)     for n > 0 (162) 

The effective number of samples is, from (67), 

M = 

1  "("^1^ / A\ 
^w^Cn) 'l -exp(-^) 

M^/l .^ 
12 R"C 

2.2 ]  ^°^ -^ =- ^ (163) 
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For example, for ^ = 10 , M s 20 ('*iloo) Accordingly we set 

M = ^-^ = 7  (for M » 1) . 
A    A 

(164) 

This is consistent with (146) employed for the box car filter. The normalized 

autocorrelation is, via (68), 

B( n) = exp^- ^ \n\]   =  exp (- ^ |nl) (165) 

A plot of the relative input signal-to-noise ratio is given in figure 32 

for a half-wave rectifier with TW = 50, Q = 5/6, and a flat bandpass input 

spectrum.  It indicates the same general behavior as corresponding earlier 

results for different input spectra and/or filters; the precise numerical 

values are a little different, and are a reflection of the particular filter 

employed here, namely (162). 
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A PITFALL OF THE LONG AVERAGING TIME ASSUMPTION 

The general factor by which the input signal-to-noise ratio for a 

half-wave u-th law rectifier must be increased, relative to the standard 

full-wave square-law rectifier, is given in (D-5). Here, SUIDM is given in 

(D-1), in terms of the normalized autocorrelation (68) of the filter weights. 

Under the long averaging time assumption, as discussed earlier with regard to 

(74) et seq., the quantity I3(n) is replaced by its origin value of 1 for all 

n. Then the quantity S(k) in (D-3) is replaced by 

oo 

"^(k) = ^ PQ(nA)  for k > 1 , (166) 

n=l 

and factor (D-5) is replaced by 

where 
00 

t^ =  2D(v) - ■• + 2 Y U(k) S(k) (168) 

k=l 

is an obvious modification of (D-2). 

A similar approach for full-wave v-th law rectifiers yields 

signal-to-noise ratio factor 

F  V (^ M ^F/ 

1/2 

where 

(169) 
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oo 

Sp = D(v) -1+2 ^ U(k) S(k) . (170) 

k=2 
even 

It will be seen from (168) and (170) that a fundamental calculation required 

is that described in (166), whether utilizing the full-wave or the half-wave 

rectifier. In particular, for the flat bandpass input spectrum given by 

figure 3, with normalized correlation (13), the summation in (166) is very 

slowly convergent for low order k. This problem is treated in appendix G, 

through a judicious combination of Poisson's formula and numerical calculation. 

Results for the long averaging time assumption are superposed as dotted 

lines in figures 33 and 34 over the earlier results from figures 24 and 25, 

respectively, for half-wave rectifiers, TW = 50, M - 1000. As Q approaches 

.5, there is a marked difference between the two results. For example, for 

V = 2, the approximation yields .34 dB whereas the exact results is 1.93 dB. 

And for w = 1, the comparison is .17 dB versus exact value 3.12 dB, almost a 3 

dB discrepancy. This serves to point out the pitfall of employing the long 

averaging time assumption when inappropriate. Regardless of the size of the 

TW product, there will always be a narrow range near Q = 1/2 where the exact 

signal-to-noise ratio drops sharply from the values listed in tables 1 and 2 

to their eventual asymptotic values for large Q. This transition is ignored 

by the long averaging time assumption and can be overly optimistic in its 

performance prediction. 
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SUMMARY 

The losses incurred by using various full-wave and half-wave v-th law 

rectifiers with different filter characteristics, sampling rates, and input 

spectra have been evaluated and plotted for a number of cases. These results 

allow for a ready comparison of many alternative choices and give quantitative 

bases for a selection procedure. 

The possibility of deliberately undersampling an input process with a 

high-Q spectrum, with insignificant loss of performance, has been analyzed and 

numerically investigated. The exact choice of sampling frequency is crucial, 

but can be easily calculated once the lower and upper frequencies of the 

band-limited input spectrum are specified. Even though the system 

nonlinearity g [x} creates harmonics and intermodulation products, and the 

undersampling process creates aliased spectral replicas, it is still possible, 

through proper choice of the sampling rate, to control all these undesirable 

by-products and achieve a near-minimum input signal-to-noise ratio for 

specified output deflection. 

The danger of using the long averaging time assumption when inappropriate 

has been demonstrated via numerical example. All the results presented in 

this report have not employed this assumption, but have utilized the precise 

filter characteristics and finite time extent. Programs for these evaluations 

are presented in tables H-1 through H-4 in appendix H. Changes required to 

handle the Gaussian spectrum or the RC filter, instead of the flat bandpass 

spectrum or box car filter, respectively, are also presented there. 
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The losses incurred by a half-wave rectifier for low-Q inputs are very 

significant and should be avoided, either by utilizing a full-wave rectifier 

or by filtering out the low frequency components of the input, prior to 

sampling and nonlinear distortion. Generally speaking, the square-law 

detector, v = 2, offers the best performance. 

Direct comparisons of these results with those in [1] are not possible, 

because there are no common examples. Also, most of the results in [1] are 

for very narrowband spectra and employ a long averaging time assumption, in 

addition to using very few terms in the series expansion for the output 

variance. 
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APPENDIX A. DERIVATION OF RECURRENCE 

o 

First of all, using (21), 

OO 00 

L(0) = J dw w" «l(w) = (2ir)"^^^ J dw w" exp(-w^/2) = 
o 

op       v-1 ^ _ 1  _ 1 

0 

In a similar fashion, there follows 

<?> w-1   1 

L(l) 
o 

We now employ the recurrence [3, (22.7.14)] 

Substitution in (A-1) yields 

We now integrate by parts, using 

'k-2' 

TR 7633 

The quantity of interest is given by (85): 

OO 

L(k) = J dw w" «i(w) He|^(w)  for all k > 0 . (A-1) 

= (2^)"''^^ jdx (2x) 2 exp(-x) = 2^    ^    ^   p(^).       (A-2) 

= [ dw w"-"^ «i(w) = 2 2 ^' ^ r(f + l) » (A-3) 

He,^(w) = w He,^_^(w) - (k-1) He,^_2(w)  for k > 2 . (A-4) 

L(k) = 1 dw w'''^^ 6)(w) He|^_^(w) - (k-1) L(k-2)  for k > 2 .       (A-5) 

u = w"  , dv = dw (8(w) He._,(w) , 

du = dw (u+1) w'' , V = -0(w) He  (w) , (A-6) 

89 



TR 7633 

the last relation from [3, (22.11.8)]. The integral in (A-5) then becomes, 

since « > 0, 

r  + 1** r   V 
-w^  )9(w) He._2(w)   + (w+1) J dw w" i8(w) He._2(w) = 

= (w+1) L(k-2) . (A-7) 

Use of this result in (A-5) immediately yields 

L(k) = (v+2-k) L(k-2)  for all k > 2 . (A-8) 

The starting values for this recurrence have already been furnished in 

(A-2) and (A-3). 
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APPENDIX B.  DERIVATIONS OF (110) AND (112) 

We employ (73) and (48) to develop the left-hand side of (110) according 

to 

dra(r) p(T) =      dr 
Tdu h(u 

fdu h2(u) 

)  h(u--r) 
df exp(i2irfT)  P^^^f)  = 

[[du h^(u)] df P^^^f) fdu h(u)      r dr h(u-T)  exp(i2irfr) = 

=     Idf P^^^f)   |H(f)l^ 
Jdf   |H(f)|2 

(B-1) 

where we let x = U-T in the innermost T integral in the second line, and used 

Parseval's theorem for the denominator term. 

For the impulsive filter case, we utilize (68) and (48) to express the 

left-hand side of (112) as 

^ w(m) w(m-n) 

5 B(n)  p(nA)  =  y   -^^—      I df exp(i2irfan)  P^^^f)  = 

m 

2. w (m) 

L m 

-1       r 
df  P^^'(f)   ^ w(m)   ^ w(m-n)  exp(i2irfAn)  = 

m n 

■ fdf   P^^^f)    !H(f)l^ 

2 w  (m) 
/ 

(B-2) 
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where we let k = m-n in the innermost sum on n in the second line, and used 

H(f) = y  w(n) exp(-i2irfan) , (B-3) 

n 

which follows from (5) and (8). Since H(f) obviously has period 1/A in f, an 

integral over any period of the power transfer function becomes 

fdf |H(f)| 

•7- '7^ 
df ^   w(m) w(n) exp(i2irfA(m-n)) = 

A   mn 

= A 2 ^^^"^^ ^ I ^^°^ • (B-4) 

m 

using orthogonality of the exponentials for m i^ n. Thus (B-2) translates into 

(B-5) SB(n)p(nA)=   Idf P^^V) lH(f)l^ 

Equation (B-4) is a special case of the useful result that 

1 df |H(f)l^ exp(i2irfAn) = ^ ^ w(m) w{m-n) = j  b(n) . (B-6) 

The method of derivation is similar to (B-4), and (62) has been employed for 

the final identification. 
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APPENDIX C.  LIKELIHOOD RATIO PROCESSOR FOR INDEPENDENT SAMPLES 

For a zero mean Gaussian input process with variance a  ,  the joint 

probability density function of M independent samples x. x„ is 
I n 

'''^ ^«'- irj^"p(-^)] 
Mr     / 2 

^m 
(C-1) 

The likelihood ratio for hypothesis H] versus HQ is 

11' *■■' ^M' 

PQ^'I ^H^ 
exp 

2(2   2]   ^ 
_ \%     •'l/ m=l 

m (C-2) 

The sufficient statistic of the samples is obviously 

2 
m=l 

^m ' (C-3) 

which is interpreted as an equi-weighted sum of the squared input samples, 
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APPENDIX D. COMPUTATIONAL PROCEDURES 

The denominator of output signal-to-noise ratio y      in (102) for 
In 

half-wave rectifiers is 

oo 

U(k) 

k=l k=l 

eO 

1+22.    '^^"^  pQ^nA) ^     (D-1) 
n=l 

= 2D(«)  - T  + 2    2    U(k)  S(k)   , 

k=l 

where we used (141) and defined the inner sum on n in (D-1) as 

oo 

S(k) = %    B(n) PQ(nA)  for k > 1 . 

n=l 

(D-2) 

(D-3) 

The decay of S(k) with k is fast enough that the infinite sum on k in (D-2) 

can be terminated and yet realize very accurate results for the quantity 

Sum^. 

For the S+N versus N input hypotheses of (131) and low input 

signal-to-noise ratio, the output signal-to-noise ratio (102) becomes 

approximately 

(D-4) 

If this is equated to the standard value in (57) with input signal-to-noise 

ratio (S/N) , the amount by which the input signal-to-noise ratio for the 

half-wave rectifier must be increased is the factor 
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S/N 
(S/N). 

2 /TW - J/2 
(D-5) 

This quantity is plotted in dB for a variety of values of v,  sampling rates, 

observation times, and input spectra, as discussed in (59) and (60). The way 

in which sampling increment a is related to the effective duration T of the 

filter is according to 

T = MA , (D-6) 

where M is the effective number of samples of the filter. Thus the ratio of 

sampling increment to inverse bandwidth is 

A   ■■■  TW 
1/W  "^   M • 

in terms of the time-bandwidth product TW and number of samples M. 

(D-7) 

For the full-wave rectifier, the only change is to limit the summation in 

(D-1) to even k, with the result 

k=2 
even 

OO CO 1 

Sump = 2  U(k) 1 + 2 2 f^^") Po(n^) = 

n=l 

= D(v) - 1 + 2 ^ U(k) S(k) , 

k=2 
even 

where we used (130) and (D-3). The factor corresponding to (D-5) is now 

(D-8) 

S/N   2 /TW ^ 
(I7N)"^= ; \^  Sump 

1/2 
(D-9) 

for low input signal-to-noise ratio.  This quantity has been plotted in dB for 

various v,  TW, M, and input spectra. 
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APPENDIX E.  EQUIVALENT FREQUENCY DOMAIN REPRESENTATIONS 

In this appendix, we derive some useful equivalent representations of the 

denominator terms in the output signal-to-noise ratios of (91) and (102). We 

begin by considering a general function g(T) with Fourier transform 

= I G(f)  = drexp(-i2irfT)  g(x)   . (E-1) 

Then the surrenation of interest is 

2 B(n)  g(nA) = ^   ^ 9(nA)  A    jdf   lH(f)) ^ exp(-i2irfAn)  = 
n n ,/^ 

"Roy    y^   Wn\^  ^ exp(-i2irfAn)  g(nA)   A  . (E-2) 

'A n 

upon use of (68) and (B-6), along with the observation that b(n) in (62) is 

even in n; the integrals over frequency f are over any interval of length 

1/A. But the summation over n in (E-2) is expressible as 

JdT exp(-i2irfT) g(r) ^ A 6(r-nA) = 

n 

= G(f) ®2 *(^ " A)^ ^ K^ - A)=^(^) • (E-3) 
n n 

which is the aliased version of G(f) in (E-1). Here we used the fact that the 

Fourier transform of a product is the convolution of the corresponding Fourier 

transforms. Employment of (E-3) in (E-2) yields 
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2 B(n) g(nA) = 
b(0) J 

df )H(f)|  -QCf) (E-4) 

•/^ 

in terms of the (periodic) power transfer function of the filter H and the 

aliased spectrum G. 

Now identify general function g as 

in which case 

g(r) = p (T) . 

,(k)...   r._  .  ..  ,_. k = J G(f) = P' '(f) =  dr exp(-i2irfr) p'^(T) , 

(E-5) 

(E-6) 

according to (47). Then (E-4) becomes 

^  B(n) p^nA) = b(0)" V^ l"(^)| ^ ^^"^(f) . 
n 'A 

(k) 
in terms of the aliased spectral versions of P  (f) 

If the spectral width, 1/T, of |H(f)|  is narrow relative to the 

bandwidth W of the spectral functions in (E-7), (see figures 5 and 6), then 

an approximation to (E-7) is afforded by observing that 

(E-7) 

2 B(n) p^nA) = bToy J ^^ h^)l^ P^'^^f) = 
n -s-A 

-  ^ P^^^O) J df lH(f)| ^ = I  P^'^^O) . (E-8) 

-.5/4 

and using (B-4). 
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According to (E-3) and (E-6), we have, for k = 1, 

n 

which is the aliased version of the input spectrum to the detection system of 

interest. 

For k = 2, observe first from (E-6) that 

P^^^f) = P^^^f) ® P^^^f) =   du P^^^u) P^^^f-u) . (E-10) 

Then the aliased version is 

p(2)(f) = 2 '^^K' - i)= 1 ^'' '^'^^'^ '^'^{' -l~') - 
n n 

= \ du P^^^u) P^^^f-u) =  r du P^^^u) P^^^(f-u) , (E-ll) 

by use of {E-9) and the periodicity of P^  . This last relation states that 

'-(2) 
the aliased spectrum P^ '(f) can be found by convolving the aliased input 

~(1) 
spectrum,?  (f), over one period. 

In particular, a special case of (E-ll) is 

?(2)(0) =  r du ['P(^)(u)]2 . (E-12) 

using the even character of the input spectrum. 
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APPENDIX F.  VARIOUS INPUT SPECTRA 

The input spectra considered in this appendix are characterized by shape 

f for f in the range (f,,fp), and are symmetric about the origin f = 0. We 

still define 

^2  ^ ^       ^ 
■^ " ^2  ^1 '  ^ "   2   •  ^ " W • (F-1) 

However, the effective bandwidth of the positive frequency components of this 

spectral shape is 

"e = 
2n ̂ ti^jTi 

-f df f 2n 
(n+1)^  f 

2  ^2n+l  ^2n+1 (F-2) 

and must be accounted for, in the evaluation of the standard output 

signal-to-noise ratio in (51). 

The results for the normalized correlation and the effective bandwidth 

,    are listed below for various values of n, where we use the abbreviations 

a, = 2irf,T ,  ttp = 2irf„T'. (F-3) 
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n = -2: -6 dB/octave 

o o- r cos(o )  cos(ajn 

W^ = W1^-^. (F-4) 
12 Q + 1 

n = -1: -3 dB/octave 

CKa^) - Ci(a^) 

^<^) =   irKa^/a^)    • 

"e = 4^-^)^"^Fi • 
Q-2 

n = 0: 0 dB/octave 

sin(o-) - sin(a,) 
p(r) = 

a^ -  o^ 

Wg = W . (F-6) 

n = 1: +3 dB/octave 

a- Sin(o_) - o, Sin(a,) + COS(a-) - COS(a-) 
P(-^) = 2 2   2 a2 - a^ 

2 
Wp = W —^^2^!  . (F-7) 
^    12 Q'^ + 1 
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♦ 

n = 2: +6 dB/octave 

A3   3V^ r 2 X^ p(r) = 3/a2 - a, )   (x - 2) sin(x) + 2 X cos(x) 

144 Q + 72 Q + 1.8 

The way in which effective bandwidth W enters the standard output 

signal-to-noise ratio is via (51); namely 

= ^ (« 
•,,  '  j (S)^ 2", , (F-9) 

since 

•2 

'^ —5-^=^ = 2W . (F-10) 

!■ df PJ ' (f) 

If we equate (F-9) to (158), and solve for the required input signal-to-noise 

ratio, we obtain 

''" -ih^) -i(^^) h^) ■        '-"> 
where ^ is given by (159); the last equality in (F-ll) applies only to the 

-6 dB/octave spectrum and has utilized (F-4). 
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APPENDIX G.  EVALUATION OF (166) FOR FLAT BANDPASS SPECTRUM 

We are interested here in calculating the quantity 

S(k) = 2. p'^(nA)  for k > 1 . (G-1) 

n=l 

where the relevant normalized correlation is 

p(T) = cos(2irfcT)  sinc(WT)   . (G-2) 

Sampling increment a is arbitrary in relation to center frequency f and 

bandwidth W. 

Frequency Domain Representation 

\c (\e) 
Since p  (T) and P'' '(f) are related by Fourier transform (47), 

P^'^^f) = J dTexp(-i2irfT) p^-r) . (G-3) 

their samples are related through Poisson's formula 

2  /(n« = i I  P< ,(k)/n 
n=--o n=-o6 

(G-4) 

see [5, page 36, (36)], for example. This relation is extremely useful for a 

bandlimited input spectrum, since its k-fold convolution P^ \f) will have 

limited extent in f, leading to finite summations on the right-hand side of 

(G-4). 
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A more appropriate version of (G-4) for our use, where p{z)  is real and 

even, is furnished by the following: 

oo 

S(k) = 2 P^CnA) = 1 
n=l 

00 

^    p'^(nA) - 1 

_n=-«> 

oa 
T_ 
2A 

n=-«o n=l 

Evaluation of Auxiliary Functions 

Before directly evaluating 

P^'^^f) = J dr exp(-i2irfT) [cos(2irf^r) sinc(Wr)7'^ , 

we first consider the auxiliary functions 

V -I if 

dx exp(-i2irux) sine (x)  for k > 1 

It is readily shown that 

1    for )ul < 1/2"^ 

G^(u) = rect{u) =^1/2  for ju| =1/2 .. 

for lul > 1/2^ 

(G-6) 

(G-7) 

(G-8) 

By repeated convolution, there then follows (see [6, pages 11, 12, 33, 34]) 

1 - lul for lul < 1 

G2(u) .[• (G-9) 

0 for |u( > 1 

4 for |u| < ^ 

(u) = < i(3 - 2lui)^ for I <   \u\   < 

for !u| > 2   ^ 

(G-10) 
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1(4 - 6u^ + 3 lu|^) for lu| < 1 

G^Cu) =<(1(2 -lul)' for 1 < lu| < 2 

for |u| > 2 

Generally, Gj^Cu) = 0 for lul > k/2. 

Evaluation of p('<)(f) 

By expanding the k-th power in (G-6) according to 

cos (y) = ^  [exp(iy) + exp(-iy)]'^ . 

(G-11) 

(G-12) 

and using (G-7)-(G-n), there readily follows 

f - f 
lp(i)(n =_l_e (!_i_!cU_L,s ^ 
A    ^   '      2WA n\ W  /- 2WA n\ w 

f -t- f 
+ G 1  w 

lp<^'(f)- 

lp"'(f) 

4WA "^2 H^]  " 2^2 f^)]. 
SWA ^3h4^^3G3 14-^^' 

A    ^   '        16WA 

f   +  4f 

4\ W 
+ 4G, 

f ± 2f^ 

~W + 6G li 

CG-13) 

(G-14) 

(G-15) 

(G-16) 

where the + shorthand notation is explained in (G-13). 

Equations (G-13)-(G-16) coupled with (G-8)-(G-ll) enable us to evaluate 

the desired quantity in (G-5) for k = 1,2,3,4, in a very efficient manner, 

since all the sums in (G-5) terminate after a finite number of terms. On the 

other hand, for k > 5, we resort to direct numerical evaluation of (6-1) and 
5 

(G-2), since the summands decay at least as fast as 1/n and can be 

terminated with a desired level of error. 
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Error Analysis 

Substitution of (G-2) into (G-1) and use of A = T/M yields 

S(k) = ^   |cos(^2irQ^ n sine i-jT n 
tw Tk 

(G-17) 

If this sum is conducted through N terms, the error E is upper bounded 

according to 

«o OO 

- ^1.      , ,k - k    k 
1 

k     k-1 
r.   M_._i  (an)''   a' J     x'^   a (k-1) N n=N+i js^ 

where a = irTW/M.    Solving for the N required, we obtain 

(G-18) 

N > N. = 7 exp 
1 
a 

'-JtnUk 
■^]- (G-19) 

which depends on k, as well as a and specified error E. This limit was used 

in (G-17) for k > 5, with E = l.E-10, to get the results in figures 33 and 34. 
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APPENDIX H.  PROGRAM LISTINGS 

In this appendix, we collect all the programs that were used to generate 

the numerical results and figures in the main body of the report. The 

auxiliary functions Si(x) and r(x) common to these programs are listed in 

table H-6. 

In order to convert table H-1 to the Gaussian spectrum instead of the 

flat bandpass spectrum, the following changes and additions are required: 

100 Te= . 5*P I *Tw*Tw/ ( M*M ;:■ 
111 F=Te*Ns*Ns 
112 IF F>100. THEN 210 
120 Rho = COS(Ti:*N£>*EXP(-F)      !  GflUSSIflH SPECTRUM 

In order to convert table H-2 to the Gaussian spectrum, the following 

changes and additions are required: 

100 Te = .5*PI*Ti.j*Tw/<M*M> 
111 F=Te*Ni*Hs 
112 IF F>100. THEN 200 
120 R h o = C 0 '5 ■; T c * N s > * E >'. P ( -f > !  G fl IJ S S I H N S P E i: T F' U M 

In order to convert table H-1 to the RC filter instead of the box car 

filter, use: 

101     Tf = 2..-M 
110    FOP Hs=l TO M*15 
140    Pk=EXP'.:-Tt*Ni :■ !  PC FILTER 
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In order to convert table H-2 to the RC filter, use: 

101    Te = 2..'N 
110    FOR N£=l TO N*15 
130    Pk=EXP'::-Te*Hs> ■!  RC FILTER 

Table H-5 lists the program used for investigating the long averaging 

time assumption; however, it is not recormiended for use, since the earlier 

programs are capable of exact evaluation of required signal-to-noise ratios. 

The word DOUBLE denotes INTEGER variables in Hewlett-Packard BASIC on the 

9000 computer. 
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Table H-1. Full-Wave Rectifier, Flat Bandpass Spectrum, Box Car Filter 

10 T w = 50. 
20 Q = 5 . •■ ■ 6 . 
30 M=100t3 
4 0 K =100 0 
50 DOUBLE r'1,K, Hs, Ks 
60 REBIM SUiK;' 
70 DIM SC 1 : 1000;:' 
30 MAT S='::0. > 
90 T.:=2. *PI*Q*Ti..j.-M 
100 Ts = PI*Tw--N 
110 FOR N=.= l TO M-1 
1 20 Rh.D = COS C Tc *Hs ) *S I H ( Ts*Ns ) .■■■ < Ts*Hi 
1 3 0 R h o 2 = R h o * R h o 
140 Pk = l.-H-=..-M 
150 FOR K£=2 TO K STEP 2 
160 Pk=Pk*Rho2 
170 S'::Ks>=S':;Ks>+Pk 
130 IF HES<Pk)<l.E-12 THEN 200 
l'5i0 NEXT Ks 
200 NEXT Ns 
210 PRINT "TW =";Tw; "   Q =" ;Q 
220     INPUT "NU =",V 
2 3 0 G 5 = F N G am m a ( . 5 * V + . 5) 
240 U=l. 
2 5 0 S ij m = 0 . 
260 FOR Ks=2 TO K STEP 2 
270    T=V+2.-K£ 
230    U = U*T*T/(Ks*(Ks-l ;0 
2 9 0    S u ni = S u fii + U * 3 ( K s.> 
300    NEXT Ks 
310 D'...' = S Q R '' PI > * F N G arii m a ■:: \'' + . 5 > ■■■ ( G 5 * G 5 > 

3 2 0 S u ni = D '■.' - 1 . + 2 . * S u m 
3 30 F = 2 . * S Q R ■: T w * S u rn ■ - N ) •■ V 
340    PR I NT V , 1 0 . *LGT ', F ) , 2 . *U*S ( K > ■■■Sum 
350    G0TO 220 
360    END 

FULL-WRVE RECTIFIER TW 
fc-'W    >=    .5 
M,   n I.J m b e r   o f   ■=■ am p 1 e s 
N u m b e r   o f   t e t- m s   i n   SiJ m 

!       FLRT   BfiNDPflSS   SPECTRUM 

BOX   CAR   FILTER 

M   = " ; M; " 
!       NU 

?   '■ 5 :" ; S ■:: K 
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Table H-2. Half-Wave Rectifier, Flat Bandpass Spectrum, Box Car Filter 

;TS*NS 

10 Tw=50. 
20 Q = 5..--6. 
30 M=1000 
40 K=1000 
50 nOUELE r'1,K,N2.,Ks. 
60 REDIH SCI :K::',U'::0:K:) 
70 DIM S C1: 10 0 0 >,U C 0: 10 0 0 > 
80 MRT s=';0.;) 
90 TC=2.*PI*Q*TM.-M 
100 Ts = PI*Tw.-n 
110 FOR Ns=l TO M-1 
120 Rho = COS ( Tc *Hs > *S I H ( Ts*Hs ::■ / 
130 Pk=l.-Ns/M 
140 FOR Ks=l TO K 
150 Pk=Pk*Rho 
160 S'::Ks:J=S(K£)+Pk 
170 IF flBSCPk><1.E-12 THEN 190 
130 NEXT Ks 
190 NEXT Hi 
200 PRINT "TN =";Tw;"   Q =";Q 
210 INPUT "HU =",V 
220 G 5 = F N G am m a(.5 * V +.5) 
230 U(0 ::■ = !. 
240 U = F N G am m a ( . 5 * V + 1 . ;'. - G 5 
250 U':: 1 )=2. *IJ*U 
260 Sum = iJ< 1 :J*S':: 1 ::■ 
270 FOR Ki=2 TO K 
280 T=V+2.-K£ 
290 U < K s > = U = U < K £ - 2 ) * T * T - ( K ■!■ * ( K s - 1 ::■ ) 
300 S u m = S u m + U * S(K s > 
310 NEXT Ks. 
320 D<■> = S 0. R ( P I J * F N G amm a (',■' + . 5 > •■■ ( G 5* G 5 > 
3 3 0 S u m = 2 . * D' ■' - 1 . + 2 . * S n m 
340 F = 2 . * S Q R ( T i.j * S u m. M > V 
350 PRINT V , 1 0 . * L G T ■:: F ::■ , 2 . * IJ * S ■:: K ). S u m 
360 G0TO 21 0 
3 70 END 

HflLF-WflVE RECTIFIER TW 
f.:.-W >= .5 
M, n u m b e r o f s am p1es 
Number of terms in Sum 

FLAT EHNDPHSS SPECTR 
BOX CRR FILTER 

UM 

M = " ; M ; " 
!  NU 

;K; S (K " ; S ( K 
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Table H-3. Full-Wave Rectifier, -6 dB/Octave Spectrum, Box Car Filter 

10 Tw = 5ei. 
20 0 = 5. ■■■iS. 
30 M=i0ei 
40 K=1000 
50 DOUBLE MjK.HijKs 
60 REDIM Sa:K) 
70 DIM S'.' 1: 1000;) 
80 MAT S='::0. ::• 
90 C 1 =2 . *P I *Tw* < Q- . 5 ':> ••■•■M 

1 00 C2 = 2 . *P I *Tw* < Q+ . 5 :> ■■■■M 
110 Sq=12.*Q*Q . 
120 Sq = SQR( '::Sq-3. >/(Sq+l . ;■ ;■ 
130 FOR N5.= l TO M-l 
140 Rho=FHRho(Hs,Cl,C2> 
150 Rho2=Rho*Rho 
160 Pk=l.-Ns/M 
170 FOR Ks=2 TO K STEP 2 
1S0 Pk=Pk*Rho2 
190 S';Ks;;'=S'::Ks)+Pk 
200 IF flESCPkX l.E-12 THEN 220 
210 NEXT Ks 
220 NEXT Ns 
230 PRINT "TW =";Tw;"   Q =";Q; 
240 INPUT "NU =",V 
250 G5 = FHGamma':: . 5*V+. 5> 
260 U=l. 
270 S u m = 0. 
280 FOR Ks. = 2 TO K STEP 2 
290 T=V+2.-Ks 
300 U = U*T*T.- (Ki*'::Ks-l ':> :> 
3 1 0 S L4 m = S u m + U * S < K i- ':> 
320 NEXT Ks 
330 D V = S Q R(PI> * F HG am m a(V +.5) ■' (G 
3 4 0 S u m = D'...' - 1 . + 2 . * S u m 
350 F = 2 . * S Q R ( T i..j * S u n i ■ M ) ■ ■ V * S q 
3 60 P R I N T '■/, 1 0 . ? L G T ( F ;:' , 2 . * U * S ( K > ■■ S 1.4 m 
370 G0TO 240 
380 END 
3 9 0 I 
400 DEF FNRho<DuUELE Ns.REflL Cli,C2) 
410 fll=i::l*Ns 
420 R2 = i:2*Ni 
4:]: 0 R h o = F H S i (. R 1 > - F N :E: 1 ■:. R 2 > + C; 0 S ( H 1 > ■■- R 1 - C 0 
440 Rhij = Hl*R2*Rhij' (R2-R1 > 
4 50 RETURN Rho 
460 FNEND 

TW 
fc.-W 
N, n u rii b e r o f s am p 1 e s 
N u m b e r   o f t- e r m s i n S u m 

FULL-WR'v'E RECTIFIER 

-6 dE.-OCTRVE SPECTRUM 

BOX CAR FILTER 

M = " ; M ; ■' 
!  NU 

K = " ; K ; " : K ':    = " ; 

:G5) 

. Hci. 
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Table H-4. Half-Wave Rectifier, -6 dB/Octave Spectrum, Box Car Filter 

10 Tu=50. !  TW HALF-WAVE RECTIFIER 
m Q = 5..--6. !  fc-W 
30 M=1Q0 !  M, number of s.arrip 1 es 
40 K=1000 !  Number of terms in Sum 
50 DOUBLE N,K,Hs,Ks 
60 RED IN S(:1:K>,IJ'::0:K;' 

70 DIt'1 S':: 1 : 1000::', IJ':;0: 1000) 
S0 MRT S=(0.) 
90 Cl=2. *PI*TW*'::Q-.5>.-M 
100 C2 = 2 . *P I *Tw* ■:: Q+ . 5 > •■M 
110 Sq=12.*Q*Q 
120 Sq = SQR':: (Sq-3. )■•■ (Sq+1 . ) > 
130 FOR Ns=l TO N-1 
140 R h o = F N R h o ( N s , C 1 , C 2 > !  - 6 d E • ■■ 0 C T fl V E S P E C T R U M 
150 Pk = l .-Ns.-M !  BOX CAR FILTER 
160 FOR Ks=l TO K 
170 Pk=Pk*Rho 
130 S'::K£>=S':;Ki. )+Pk 
190 IF flESCPk ::■< 1 . E-12 THEN 219 
200 NEXT Ks 
210 NEXT Ns 
220 PRINT "TW =";Tu;"   Q =" ;Q; "   M =" ;M; "   K =";K;"  S(K> =";S<K) 
230 INPUT "NU =",V !  NU 
240' G 5 = F N G am m -it < . 5 * V +. 5 > ' 
250 U<0>=1. 
260 U = FNG.amma( . 5*V+1, >.-G5 I .    . 
2?0 U'.'1 )=2. *U*U 
2 8 0 S u m = U '' 1 ) * S I-. 1 > 
290 FOR Ks=2 TO K 
300 T=V+2.-Ks 
3 1 0 U ( K s ) = U = U ( K £ - 2 > * T * T .••■ ( K s * ( K i - 1 ) ) . 
3 2 0 S u m = S u m + U * S < K s > 
330 NEXT Ks 
340 D '.■' = S Q R < P I > * F N G am rn a C V + . 5 > - ( G 5 * G 5 > 
350 Sum = 2. *D'..'-1 .+2. *Sum 
360 F = 2 . * S Q R ( T w * S u m ■ N > ■■-' V * S q 
370 PRINT V,10.*LGT<F>,2.*U*S(K>/Sum 
3S0 GOTO 2 30 
390 END 
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Table H-5. Half-Wave Rectifier, Flat Bandpass Spectrum, 
Long Averaging Time Assumption 

10 Tw = 5Gi. !       TW HflLF-WnVE   RECTIFIER 
20 Q = . 5 0 1 !       f c .•■■• W    > =    . 5 L 0 NG   R VE R flG I H G   TIME 
30 M =1000 !      M,    n u m b e r   o f   s -a m p 1 e s fl S S U N P T I 0 H 
40 K=ie00 !  Humbii-r of terms in Sum 
50 REDIM SC 1 : K> , U':;0: K:;', N':;5: K> 
S0 DIM S <1: 10 0 0),U(0: 10 0 0),R h o(1:10 0 0 0),R k(1:10 0 0 0) 
70 DOUBLE H(5: 10000) , M, K, Hi., Ks, Hmax 
80 Q2=Q+Q 
90 Q3=Q2+Q 
100 Q4=Q3+Q 
110 Sl=FNGl(i:f) - 
120 S2=FHG2(Q2>+FNG2(0.> 
130 S3=FHG3(Q3)+3.*FHG3(Q) 
140 S4 = FNG4(Q4>+4. *FNG4(Q2)-f3. *FHG4(0. > 
150 i:iwd = M/Tw 
160 Fow=0. 
179 F o w = F o w + 0 w d 
ISe IF Fow-Q4>=2. THEN 250 
1 90 S 1 =S 1 +FHG 1 ( Fciw-Q > +FHG 1 ( Fow + Q > 
200 S 2 = S 2 + F H G 2 ( F o w - Q 2 ) + 2 . * F H G 2 ( F o w ) + F N G 2 ( F o w + Q 2 ') 
210 S 3 = S 3 + F H G 3 ( F o w - Q 3 > + 3 . * F N G 3 ( F o w - Q ) + 3 . *F H G 3 ( F ij i.i + Q ) + F H G 3 (. F o hi + Q 3 ) 
220 S4 = S4 + FNG4(Fi:.i...i-Q4:>+4. *FNG4 ( Fow-Q2 >+6 . *FNG4 ( Fow ) 
230 S4 = S4 + 4. *FNG4(F.:.w + Q2>+FNG4(Fow + G4> 
240 GOTO 170 
250 S(1) = .5*0wd*S1 -.5 
260 S ( 2 > = . 2 5 * 01..I d * S 2 - . 5 
270 S(3) = . 12 5 * 0 w d * 3 3-.5 
230 S(4)=.0625*Owd*S4-.5 
290 Tc=2. *PI*Q*Tw.-M 
300 Ts = PI*Ti...i.- M 
310 Error=l.E-10 
320 Cl = l. 'Ts 
330 C 2 = -L 0 G(T s * E r r o r) 
340 FOR Ks=5 TO K 
350 T=Ks-l 
360 N ( K s > = I H T ( r: 1 * E X P ( ( C 2 - L 0 G ( T ) ) ■ - T > :> + 1 
370 NEXT Ks 
3S0 FOR Ks=K-l TO 5 STEP -1 
390 I F N ( K s > ■: N ( K s + 1 ;■ THE H H ( K s > = N ( K s + 1 ) 
400 NEXT Ks 
4 10 Nm=i::< = MflX(N(*.' > 
4 20 P E D I M R h o ( 1 : N m ^x > , R k ( 1 : H m a>:: :> 
430 FOR Ns=l TO Hm-ax 
4 40 R = R h o ': N s > = C: 0 S ( T c * H i > * 3 I N C T i * H s > • ': T i- * N s > 
450 Rk(Ns>=R*R*R*R 
460 NEXT Ns 
470 FOR Ki=5 TO K 
4 S 0 S = 0 . 
4 90 FOP Ni.= l TO N(Ki::' 
500 R k = R k ■:: N i :' ^ R k '. N i-,' ^ P: k, o ■ ' I = > 
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Table H-5 :onfd). Half-Wave Rectifier. Flat Bandpass Spectrum. 
TaDie H       ;^^^^ Averaging Time Assumption 

510 S=S+Rk 
520 NEXT Ns 

530 S(Ks>=S 

540 
550 

NEXT Ks 
PRINT "T „ ,V                      '  NU 

560 INPUT "h- 

570 G5 = FNGari a(.5*V+.5:^ 

580 IJ ■; 0 ) = 1 . 

5'310 lJ = FNG=iriUi ( . 5*V+1 . >--G5 

600 IJ(;i::'=2.- *U 

610 Suni = ua 3(1) 

620 FOR Ks=. TO K 

630 
6 4 0 

T = V + 2.-t 
lJ(Ks>=U^ 

(Ks-2)*T*T.-(Ks*(Ks-n::. 

650 Surii = Sum I*S':;KS> 

660 
670 

NEXT Ki. 
D'..-' = SQR'- . ;:■ *FNG.=imrft.=L(: V+ . 5 > ■■ '■■ G5*G5 > 

630 3 u fii = 2 . * '-1 . +2. *Surii 

6 9 0 F=2.*SQ Tw*Surfi/ri> ■•■■'■/ 

■ 700 PRINT V 
lO.*LGT(F>,2.*U*S<:K;'/Sum 

710 GOTO 56 

720 END 
730 1 

740 DEF FNG (P:' 

750 fl = RES'::F 

760 IF fl<.- THEN RETURN 1. 

770 IF R=." THEN RETURN .5 

730 .RETURN a 

790 FNEND 

300 1 

3 1 0 DEF FN (F ) 

320 R = flE3': 

330 IF Fl<l THEN RETURN 1.-R 

34 0 RETURN 1, 

350 FNEND 

360 ! 

370 DEF FN ? < F > 

3 3 0 R = RES': ' 

3 9 0 IF fl<. THEN RETURN .75-R*R 

9 0 0 IF fl<l 
5 THEN RETURN . 1 25* •:; 3 .-fl-H ;■ *'■. 3 • ^■ 

910 RETURt 0 . 

920 FNEND 

9 3 0 1 

940 DEF Ft 4 ( F > 

950 fl = RES ;■ 

9 6 0 
970 
980 

R2 = R*' 
IF H< 

'  IF H: 

THEN RETURN .. 4 .-6 . ^R2 + 3 . *R2*fl :• ^ 
THEN RETURN >; 2 .-fl ' *'■ 2 .-H ' ^'-. ^ . H 

990 RET UP 0 . 

1 0 0 0 FNEND - 

K =";K;"  S(K) =";S(K 

H-H 
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Table H-6. Auxiliary Functions Si(x) and r(x) 

10 
20 
30 
40 
50 
60 
70 
S Q 
90 

10 0 
1 10 
120 
130 
140 
150 

DEF FNSi (X'> '■■' 1 a 5 . il, 14 ':R 

IF Y>1. THEN 70 
Si =2.334467120lSE-5-Y*3.06192435S22E-7 
Si =X*< 1 . -Y*< . 0555555555556-Y*< 1 . 666666^1^ i^f^7E-:':-Y*S i ■' ■' •' 
RETURN Si 

Tl=38. 102495 +Y*( 335. 677320 +Y*'::265. 1 87033 + Y*( 33. 027264 + Y ) : 
T2= 1 57 . 1 05423 +Y* C 570 . 236230 + Y* C 322 . 6249 1 1 + Y* f 40 . 02 1 4:'r-; +Y ' 
F = T1.--'::X*T2> 
Tl=21.321899 + Y*(352.01349S + Y*C302.757365 + Y*(42.242S55 + Y) ; 
T2 = 449. 690326 + Y*( 1114. 9733S5 + Y* ( 432 . 435934 + Y* f 43 . 19h'^ •:■? + ' 
G = T1.-(Y*T2::' 
S i = 1 . 57079632679*SI:N ( X) -F*i::OS C K "> -G^S I N ( X :' 
RETURN Si 
FHEND 

10 DEF FNGammaOr:' 
20 DOUELE H,K 
30 N=INTO^;) 
40 R=;K-N 
50 IF H>0 OR R>0. THEN 30 
60 PRINT "FNG.=inirria<X> IS NOT DEFINED FOR 
70 STOP 
80 ^IF R>0. THEN 110 
90 G.irrirria2= 1 . 

1 0 0 G 0 T 0    1 3 0 
110 p = 4 3 9 . 3:3 044 4 0600256 76 + R 
1 20 P = S762.71029735214396 + R* 
1 3 0 F' = 4 2 3 5 3 . 6 3 9 589 7 4 4 0 3 9 6 + R 
1 4 0 Q = 499. 0 21:5 2 b 6 2 1 4:]; 9 S 4 3 - F; 
1 5 0 Ci = 9 ■? 4 0 . :3 0 7 4 1 5 i.j 3 2 7 7 0 9 0 - R 
1 6 0 Q = 4 2:]; 5 3 . 6 3 950 97 4 4 0 9 O O + R * 
170 Gariirria2 = P ■ Q 
130 IF N:>2 THEN 220 
190 IF N<2 THEN 270 

■=i 0 0 G a til fi I a = G a m m a 2    ^ 
210 RETURN Gamma 
■=- ^ tl I j a m m a = G a m m a 2 
230 FOR K=l TO N-2 
2 4 0 G a m m a=G a n i m a * < X-K> 
250 NEXT K 
260 RETURN Gamma 
270 R =1. 
2 3 0 F 0 F; K = 0 TO 1 - N 
29 0 R = R * ■::::; + K :. 
3 00 NEXT K 
-• 1 0 'j am rii =i= G am m a 2 i'' 
::2 0 RETURN Gam mi 
i30 FNEND 

HART, page 135, #524:: 

5 0. 10 3 6 9:3 7 5 2 9 7 0 9 5:3 O + R * 6 . 744 9 5 0 
2 0 0 3 . 5 2 7 4 0 1 3 0 7 2 7 9 1 2 + F: * P > 
2 0 S 3 6 . 3:6 1 7 3 9 2 6 9 3 3:7 4 + R * p > 
1 39.493234157023016-R*(23.OS 15 
1 5 2 3 . 6 0 7 2 7 3 7 7 9 5 2 2 0 2 + R * i'! > 
2 9 3 0 . 3 3 5 3 3 0 9 2 5 6 6 4 9 9 - R * Q ) 

!  Gamma':'2 + R;' for 3 < R :; i 

;459252:: 

5 2 4 5 ;E: 0 1 2 5 - R 
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